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a b s t r a c t

A fluid lipid membrane transmits stresses and torques that are fully determined by its geometry. They
can be described by a stress- and torque-tensor, respectively, which yield the force or torque per length
through any curve drawn on the membrane’s surface. In the absence of external forces or torques the
surface divergence of these tensors vanishes, revealing them as conserved quantities of the underlying
Euler–Lagrange equation for the membrane’s shape. This review provides a comprehensive introduction
into these concepts without assuming the reader’s familiarity with differential geometry, which instead
will be developed as needed, relying on little more than vector calculus. The Helfrich Hamiltonian is then
introduced and discussed in some depth. By expressing the quest for the energy-minimizing shape as a
functional variation problem subject to geometric constraints, as proposed by Guven (2004), stress- and

torque-tensors naturally emerge, and their connection to the shape equation becomes evident. How to
reason with both tensors is then illustrated with a number of simple examples, after which this review
concludes with four more sophisticated applications: boundary conditions for adhering membranes, cor-
rections to the classical micropipette aspiration equation, membrane buckling, and membrane mediated
interactions.

© 2014 Elsevier Ireland Ltd. All rights reserved.
. Introduction

Lipid membranes are amazing soft matter structures. Self-
ssembled from single molecules into fluid films just a few
anometers thick, they can stably span macroscopic lateral scales.
any of their characteristic energies (such as the aggregation

nergy per lipid or the bending rigidity) are about an order of
agnitude bigger than thermal energy, hence membranes are

table against thermal fluctuations but soft enough to be easily
eformed, for instance by proteins and the energies available bio-
hemically from ATP hydrolysis. For the same reason undulations
f lipid bilayers are readily noticeable in a microscope as “flicker-
ng,” and they give rise to physically observable effects, for instance

long-range entropic repulsion between two fluctuating mem-
ranes. The strong drop in dielectric constant across just a few
anometers suffices to make membranes essentially perfect insu-

ators for bare ionic charges, and they also constitute barriers over a

ange of permeabilities for a great many other solutes. Membranes
ence compartmentalize space, but they can also change topology
hrough fission and fusion events, which in turn can be exquisitely

∗ Tel.: +1 4122684401.
E-mail address: deserno@andrew.cmu.edu

ttp://dx.doi.org/10.1016/j.chemphyslip.2014.05.001
009-3084/© 2014 Elsevier Ireland Ltd. All rights reserved.
controlled by several classes of protein machineries. Mixed mem-
branes show a variety of different phases and phase coexistence
regions, and these can couple back to their morphology. All of these
facets of membrane chemistry and physics have been widely stud-
ied over the past decades, and they are the topics of numerous
contributions in this special issue. The present review focuses on
the large scale: how to describe membranes in a way that is both
mathematically elegant and efficient as well as physically intuitive.

One curious aspect of the way lipids assemble into bilayers is
that the emergent area per lipid is a remarkably stiff degree of free-
dom: membranes are hard to stretch but easy to bend. Of course,
stretching and bending are not dimensionally equivalent, so the
meaning of “lower in energy” will have a length scale hidden in it.
A better way to phrase the statement is therefore as follows: Take a
flat membrane patch and stretch it by some dimensionless strain s,
thus increasing its energy. Alternatively, curve it into a closed but
tensionless spherical vesicle of radius R. If the two energies hap-
pen to be equal, what is the value of R? A simple calculation (see
Section 3.2) gives the answer
Rs = 1
s

√
2(2� + �)
KA

, (1)

dx.doi.org/10.1016/j.chemphyslip.2014.05.001
http://www.sciencedirect.com/science/journal/00093084
http://www.elsevier.com/locate/chemphyslip
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemphyslip.2014.05.001&domain=pdf
mailto:deserno@andrew.cmu.edu
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here � and � are the bending and Gaussian curvature modulus,
espectively, and KA is the area expansion modulus. Inserting typ-
cal values for these material parameters and choosing a strain of
= 1% leads to R≈80 nm. Quite small strains correspond to fairly
arge curvatures (in the sense that this radius is only about 20
imes bigger than the bilayer thickness, while a membrane’s lat-
ral size can easily exceed its thickness by three to four orders of
agnitude).
For the purpose of the present review, the probably most

emarkable aspect of fluid lipid membranes that follows from
his observation is that on length scales not much bigger than
heir own thickness, their physical behavior can be described with
stonishing accuracy by a purely geometric Hamiltonian—one that
enalizes curvature. In the early 1970s this insight dawned on
anham (1970), Helfrich (1973) and Evans (1974), and the theo-
etical (and often closely linked experimental) work that followed
rom this idea ushered in a golden era for membrane science.

Unfortunately, curvature elastic surfaces come along with
ome challenging math. For instance, more than a decade passed
etween the discovery of the energy functional (Canham, 1970;
elfrich, 1973; Evans, 1974) and the appearance of its associated
uler–Lagrange equation in the physics literature (Ou-Yang and
elfrich, 1987, 1989).1,2 This so-called “shape equation,” in turn,

s a formidable fourth order partial nonlinear differential equation,
nd finding a general analytic solution for this behemoth seems
forlorn hope. In the 1990s substantial efforts were devoted to

umerically solving this (or a closely related) equation—mostly for
he special case of axisymmetry (Svetina and Žekš, 1989; Seifert
nd Lipowsky, 1990; Lipowsky, 1991; Seifert et al., 1991; Jülicher
nd Lipowsky, 1993, 1996; Jülicher and Seifert, 1994; Miao et al.,
994), but occasionally also for the general case (Heinrich et al.,
993; Kralj-Igliç et al., 1993). The reader will find more details on
his in existing reviews (Seifert and Lipowsky, 1995; Seifert, 1997).

As important as the extensive numerical results have been, they
ight also have contributed to a feeling that outside heavy numer-

cs or perturbation theory little can be said about the general case.
he shape equation expressed in some parametrization does not
eadily reveal its structure, and even though a first integral for
he axisymmetric case had been found (Zheng and Liu, 1993), its
hysical meaning remained elusive. And yet, there exists a link
etween the symmetry of variational problems and the solutions
f their associated Euler–Lagrange equations: Noether’s theorem
Goldstein et al., 2002). Continuous symmetries, such as transla-
ions and rotations, go along with conservation laws and, in field
heory, conserved currents that permit one to discuss exact prop-
rties of these solutions even if one cannot actually find them. The
onsequence for membranes is that there exist objects—the stress
nd the torque tensor—which are divergence free as evaluated on
he surface of the membrane (Capovilla and Guven, 2002a,b, 2004;
apovilla et al., 2002). The resulting conservation laws hold even

f the specific membrane shape has no discernible translation or

otation symmetry, for they are a consequence of the symmetry of
he Hamiltonian, not of a specific solution.

1 The work by Ou-Yang and Helfrich (1987, 1989) introduced the shape equa-
ion to physicists, but in other communities it had been well known. The special
ase K0 = 0 was worked out a decade earlier by Jenkins (a mechanical engineer)
Jenkins, 1977a,b), and mathematicians knew it long before then (Thomsen, 1924;
laschke, 1929; Willmore, 1965, 1982; White, 1973; Pinkall and Sterling, 1987).
ince including K0 does not incur any additional complications, these earlier publi-
ations deserve more credit than is usually given to them in the physics community.

2 Even afterwards, a widely used axisymmetric specialization of the shape equa-
ions was claimed to be incorrect (Hu and Ou-Yang, 1993; Naito et al., 1993; Zheng
nd Liu, 1993), a criticism that was refuted on the basis that more attention needs to
e given to the boundaries during functional variation (Jülicher and Seifert, 1994).
s of Lipids 185 (2015) 11–45

The existence of stress- and torque-tensors, which are explicit
functions of a membrane’s geometry, affords profound insights
not only into the nature of solutions, but also into questions of
immediate practical relevance, such as: what force does a mem-
brane respond with upon deformation? How does it adapt its
shape when it adheres to a substrate or another membrane, and
how does it remodel the other membrane in the latter case? And
what types of forces does it transmit between multiple objects
binding to it? Despite the stress tensor’s intuitive physical mean-
ing, physicists seem to be somewhat shy to use it, whereas for
instance mechanical engineers have developed highly sophisti-
cated frameworks largely unheard-of in the physics community
(Jenkins, 1977a,b; Steigmann, 1999; Agrawal and Steigmann, 2008;
Napoli and Vergori, 2010). I suspect the reasons are twofold: First,
once physicists learn about Lagrangian or Hamiltonian Mechanics,
the concepts of stress and force might appear a quaint remnant
of the olden Newtonian days, best to be avoided. This of course
is a luxury one can only afford in a world consisting of point par-
ticles, but not one that is populated with elastic continua.3 And
second, in order to express the stress tensor in a geometric language
free of the idiosyncrasies of arbitrary surface parametrizations, one
needs some differential geometry (of course, so do the engineers).
And even though the amount necessary to understand virtually the
entire framework from scratch is remarkably modest, it might still
prove too much of an activation barrier.

It is the purpose of this review to provide a helping hand
over this barrier. While there are excellent textbooks on differ-
ential geometry aplenty (Kreyszig, 1991; do Carmo, 1976, 1992;
Willmore, 2012; Spivak, 1970, 1975a,b; Lovelock and Rund, 1989;
Frankel, 2004; Schutz, 1980; Darling, 1994; Flanders, 1989), the
bare minimum necessary to follow most of the reasoning and all
of the subsequent applications can be condensed into a couple
of pages. This review is aimed towards researchers who wish to
learn more about these concepts, but who have no working expe-
rience with differential geometry and do not wish to invest several
months to study the mathematical prerequisites before they can
decide whether it is even worthwhile to adopt this framework.
What follows will therefore be akin to a teaser trailer, focusing on
the highlights in an abbreviated fashion, hoping to convince the
reader that it’s worthwhile to watch the whole movie (or, even
better, read the book).

This review is organized as follows. Section 2 starts by sum-
marizing the essential differential geometry of two-dimensional
surfaces embedded in three-dimensional space. Beginning with
a general purpose parametrization, metric and curvature tensor
are introduced, and their connecting integrability conditions are
developed. Along the way the issues of co- and contravariant
components are clarified and the notion of a covariant derivative is
introduced. In Section 3 these tools are used to derive the Helfrich
Hamiltonian as the essentially unique large-wavelength limit of
what physics and symmetry permit, and its phenomenological
parameters are discussed in some detail, after a quick glance at thin
plate theory. The relation between bilayer and monolayer physics
is discussed within the framework of parallel surfaces, and a few
comments on higher order corrections are made. Section 4 derives
the stress tensor from first principles, beginning with a motivation
for why membrane stresses differ from those in soap films or

simple fluid surfaces. After revisiting the concept of a surface vari-
ation, and arriving at the classical shape equation by varying the
geometry and ultimately the Helfrich Hamiltonian piece-by-piece,

3 The Landau/Lifshitz volume on elasticity (Landau and Lifshitz, 1999) pithily dis-
abuses the reader of this misconception by introducing the strain tensor in Chapter
1 paragraph 1, and the stress tensor in paragraph 2; however, elasticity is no longer
part of the standard physics curriculum.
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n alternative route is taken that immediately unveils a conserved
uantity, which is subsequently identified as the stress tensor, and
hose divergence is identical to the Euler–Lagrange derivative.

his tensor measures the force per length transmitted through any
urve drawn onto the membrane’s surface, and by expressing it in
he Darboux frame of that surface curve, the stress tensor is stripped
f its last tie to an arbitrary parametrization. The section closes
ith a number of simple examples that illustrate the stress tensor

n frequently encountered situations. While stresses owe their con-
ervation to translation invariance, torques are linked to rotation
nvariance, and Section 5 shows how this connection comes about.
pecifically, the new concept of an intrinsic torque is discovered,
hich does not exist for surfaces merely characterized by a surface

ension. Finally, Section 6 illustrates how to handle the stress- and
orque-framework through a number of more advanced examples,
amely: boundary conditions for adhering membranes, correc-
ions to the classical micropipette aspiration equations, membrane
uckling, and exact results for membrane mediated interactions.

While this review will make generous use of numerous mathe-
atical tools, it seems nevertheless important to warn purists that
lot of mathematical subtleties will be swept under the physicist’s

ug. Questions about existence or uniqueness, how many times dif-
erentiable a mapping has to be, how precisely many quantities
re defined, what the exact conditions for several results are, etc.,
ll these issues will be intentionally ignored. They have answers,
f course, and these occasionally matter, but physicists tend to
pproach any new formalism with a mercenary cost–benefit anal-
sis, first wanting to know whether it actually helps to solve new
roblems more swiftly than the tools they already know, and so
hey are in the habit of first requesting some hands-on working
nowledge based on which they can judge whether learning the
ath more thoroughly is worth their time. In the spirit of this time-

onored pragmatism (and good precedent (Kamien, 2002)), this
eview will focus on how to operate the machinery, delegating its
nner workings to numerous excellent discussions in the mathe-

atically impeccable literature (Kreyszig, 1991; do Carmo, 1976,
992; Willmore, 2012; Spivak, 1970, 1975a,b; Lovelock and Rund,
989; Frankel, 2004; Schutz, 1980; Darling, 1994; Flanders, 1989).

. Differential geometry—a minimalist toolkit

Given that the lateral dimensions of lipid membranes tend to
reatly exceed their thickness, we have every right to expect that
he local lipid physics will only enter the large-scale membrane
roperties inasmuch as it sets the values of a small number of
oupling constants in an effective larger-scale Hamiltonian. This
s no wildly optimistic hope; this is how physics works when
cales separate. The natural limit of this scale separation is to envi-
ion membranes as curved two-dimensional surfaces embedded in
hree-dimensional space, whose energy depends in some yet to be
pecified way on the geometry, especially the extent of curvature
eformation. Linguistics alone therefore suggests that large-scale
embrane physics is far from a linear problem, and these concerns

urn out to be on the mark. However, it is important to under-
tand the origin of the nonlinearities one is bound to encounter,
ince they arise for two very different reasons: On the one hand,
he link between geometry and energetics—the Hamiltonian, if
ou will—could be arbitrarily complicated. On the other hand, the
escription of a curved surface itself is prone to involve nonlinear
athematics. The first point is ultimately an expression of the key

nderlying physics, and hence there is not much we can do if we

islike its form (other than approximating it until we feel comfort-
ble dealing with it). The second one, however, will greatly reflect
ur choice in describing the surface and its geometry, for there are
lever and not-so-clever ways of doing this. It thus behooves us to
s of Lipids 185 (2015) 11–45 13

first revisit some of the ingenious mathematical tools for dealing
with curved surfaces, which permits us to circumnavigate some of
the more tedious limitations that arise if we cling too closely to
specific parametrizations.

2.1. How to describe a surface

Imagine that we wish to describe the surface of a sphere of radius
R. Let us consider three possibilities for doing this. In the first one,
take

z = ±h(x, y) = ±
√
R2 − x2 − y2, (2a)

where {x, y, z} are Cartesian coordinates and both x and y are suit-
ably restricted so that the square root remains real. The ±-sign
accounts for the “upper” and the “lower” half of the sphere.

As a second possibility, consider

r = X(ϑ,ϕ) = R

⎛
⎝ sinϑ cosϕ

sinϑ sinϕ

cosϑ

⎞
⎠ ,

ϑ ∈ [0,�]

ϕ ∈ [0,2�]
, (2b)

where now {ϑ,ϕ} are spherical polar coordinates, and we evidently
must be a bit careful at the poles, whereϑ = 0 orϑ =� and the value
of ϕ becomes irrelevant.

Finally, examine

r = R, (2c)

where again {r,ϑ, ϕ} are spherical polar coordinates, but due to the
high symmetry of a sphere, we simply state that the radius be of
some particular value.

These three parametrizations are very different. The first one
involves a square root, together with some onerous restrictions
on the set of permitted values for x and y, and an ugly ±-symbol
(ugly, since it chops the sphere in half at the equator, with
no differentiable connection linking the two parts). The second
parametrization removes the square root at the price of trigono-
metric functions. The third one, pleasingly, involves none of that,
but it describes the surface “in one go,” without the possibility to
single out a specific point—for which we would have to go back to
something like (2b).

The square root in (2a) reminds us that Cartesian coordinates
are a graceless way to describe a sphere. As universal and simple
as these coordinates are, they usually do not reflect the geometry
of whatever it is they are striving to describe. Accordingly, square
roots show up whenever distances not aligned with the axes play
a geometric role. Of course, this does not mean that the geometry
is difficult, it only means that a Cartesian parametrization does not
naturally capture it, and this problem is not at all unique to spheres.
The second and third parametrization explicitly use a coordinate
system adapted to the sphere, and yet the second one is still non-
linear. However, as already stated, the trigonometric functions only
matter if we wish to identify individual points on the sphere, and
to be fair, these are then identified only with respect to an arbi-
trarily fixed set of axes that the spherical polar system first had
to prescribe (“where is the north pole?”, “where is the Greenwich
meridian?”). The third parametrization, even though we can view
it as using spherical polar coordinates, really comes closest to a
description that is coordinate free, since it describes the surface of
a sphere through its defining geometric property: the locus of all
points having a fixed distance from some given center.

It is no coincidence that stripping the parametrization away
clarifies the true geometry. Granted, the example of a sphere was

almost misleadingly simple, since it gave a description of the whole
surface in one fell swoop, a luxury we cannot usually expect. But at
least locally it ought to be possible to describe surfaces by their true
geometric properties (say, their local curvature) instead of hobbling
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Fig. 1. Illustration of the surface parametrization described by Eq. (3). A region in the
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wo-dimensional (u1, u2)-space is mapped to a surface in three-dimensional space.
he vectors e1 and e2 arise as tangent vectors to the coordinate lines u2 = const .
nd u1 = const ., respectively. The normal vector is perpendicular to both e1 and e2.

n the crutches of some more or less clumsy parametrization. The
xtent to which we succeed in this endeavor will determine how
ell we can disentangle nonlinearities of the underlying physics of

ipid membranes from those sneaking in through a specific math-
matical description.

These remarks should suffice to convince the reader that
ubstantial benefits can be reaped by diving a bit deeper into
he elegant framework of differential geometry, the mathemati-
al tool by which we will largely overcome the arbitrariness of
arametrizations. To boost the morale, it is worth mentioning
head of time that the efficiency by which just a little bit of extra
athematics does away with a large number of awkward problems

s nothing short of amazing.

.2. A general purpose surface parametrization

While abolishing parametrizations is our ultimate goal, we first
ave to start with one. Many possibilities exist, but we will begin
ith a fairly general and common parametrization reminiscent of

q. (2b), but without the built-in spherical symmetry. The idea is
o adopt a local (evidently two-dimensional) coordinate system
u1, u2} for the surface we wish to describe and find a map-
ing that assigns each coordinate pair (u1, u2) to some point in
hree-dimensional space (which we describe by its Cartesian coor-
inates):

= X(u1, u2) =

⎛
⎜⎝
X(u1, u2)

Y(u1, u2)

Z(u1, u2)

⎞
⎟⎠ , (3)

here (u1, u2) ∈ G ⊂ R2. The bold-faced type of r or X means
hat they are vectors in three-dimensional space. Fig. 1 illustrates
his mapping, which is called a “chart.” Generally, we cannot hope
o parametrize a given surface with a single chart—this does not
ven work for something as quotidian as the surface of a sphere.

nstead, a surface (or, more generally, a differentiable manifold)

ust usually be constructed as the union of several charts, appro-
riately called an “atlas.” Where two charts overlap, the mappings
ust be connected differentiably (Kreyszig, 1991; do Carmo, 1976;
s of Lipids 185 (2015) 11–45

Willmore, 2012; Lovelock and Rund, 1989; Frankel, 2004; Darling,
1994; Schutz, 1980): If the two parametrizations X(u) and Y (v)
overlap on some patch of the surface, then the mapping Y−1 ◦ X
from the u-space to the v-space, as well as its inverse X−1 ◦ Y
have to be sufficiently many times differentiable (i.e, constitute a
“diffeomorphism”).

Having agreed on a parametrization of a surface à la Eq. (3), we
can now construct a coordinate system on every point of the surface
in the following way. First, we define the two vectors

ea := ∂X

∂ua
= ∂aX, a ∈ {1,2}. (4)

It is fairly obvious that ea is tangent to the surface and points into
the direction in which the value of the coordinate ua increases—just
imagine that ua somehow measures “time” along this particular
coordinate line, then ea would be the velocity vector along this
coordinate curve, which must evidently be tangential to it and thus
to the surface. The set { e1, e2} then spans the local tangent plane to
the surface, provided the two vectors are not collinear (if they are,
something went terribly wrong with our choice of the parametriza-
tion).

While the coordinates ua were chosen to have an upper index,
the vectors ea now have a lower one. This is much more than
convention. Before we proceed, we must discuss this seemingly
incidental detail.

2.3. Excursion: covariant vs. contravariant

The placement of indices in Eq. (4) (and really for the rest of
all that follows) is part of a clever formalism that distinguishes
between “covariant” (lower) and “contravariant” (upper) com-
ponents of geometric objects such as vectors or tensors. These
objects live in different mathematical spaces (tangent and cotan-
gent spaces), but physicists prefer to say that they “transform
differently.” For instance, if we were to define a new set of coor-
dinates, ub, which are given by some (sufficiently smooth and
invertible) functions of the old coordinates ua, then the differential
dua of the coordinates ua would obviously transform as follows:

dua =
∑
b

(
∂ua

∂ub

)
dub, (5a)

where we used nothing but the chain rule. Even if the transforma-
tion of the coordinates is very nonlinear, the differentials transform
linearly, namely with the Jacobian (∂ua/∂ub) of the transformation
equations.

The central point to appreciate is that not all one-index-objects
transform like Eq. (5a). For instance, the tangent vectors ea trans-
form differently:

ea = ∂X

∂ua
=
∑
b

∂X

∂ub
∂ub

∂ua
=
∑
b

(
∂ub

∂ua

)
eb. (5b)

This is again a linear transformation, but the Jacobian (∂ub/∂ua) is
the inverse of the one that appeared in the previous case (5a).

The fact that there are two different transformation laws might
appear like a nuisance, but it enables something extremely impor-
tant: the construction of coordinate invariant scalars. To see this,
define a product between (the components of) a contravariant
vector Xa and (the components of) a covariant vector Yb by mul-
tiplying the components and summing over them:

∑
aXaYa. Such
an operation is known as a “contraction.” If we now ask how this
object transforms under a change of coordinates, two transforma-
tion matrices would appear—one for the first factor and one for the
second factor. But because of the co- vs. contravariant nature of the
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The equality at “∗” follows from differentiating the obvious iden-
tity ea · n = 0, and the last equality shows that Kab is a symmetric
tensor under index exchange, just like the metric. The tensor Kab
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wo factors, one of the Jacobians is the inverse of the other, and
ence they cancel:

∑
a

XaYa =
∑
a

[∑
b

(
∂ua

∂ub

)
X
b

][∑
c

(
∂uc

∂ua

)
Yc

]

=
∑
b,c

X
b
Yc
∑
a

(
∂ua

∂ub

)(
∂uc

∂ua

)
=
∑
b,c

X
b
Yc
∂uc

∂ub

=
∑
b,c

X
b
Ycı

c
b =

∑
b

X
b
Yb,

(6)

here ıc
b

are the components of the unit matrix (or the “Kronecker-
elta,” which is 1 if b = c and 0 otherwise). This means that the
umerical value of the contraction is the same when evaluated

n the two different coordinate systems. It is independent of the
oordinates, or as physicists are wont to say, the expression is
eparametrization invariant. This is very important, because if such
xpressions are unaffected by coordinate changes, they express
eeper physical or geometric properties than the components they
re constructed from. Such a contraction can work its scalar magic
nly with oppositely transforming components. The placement of
ndices not only helps us to keep track of this, but also enables the
ollowing nifty (“Einstein”-) convention: Whenever you find two
dentical (“dummy”) indices, one upstairs and one downstairs, a
ummation is implied over their permissible range (which here is
f course from 1 to 2). The previous equation can then succinctly
e written as

aYa =
(
∂ua

∂ub

)
X
b
(
∂uc

∂ua

)
Yc = XbYc

(
∂ua

∂ub

)(
∂uc

∂ua

)
= XbYb.

.4. Important geometric objects

In Section 2.2 we have introduced a general-purpose surface
arametrization, Eq. (3), and from it defined the two tangent vec-
ors ea =∂a X . We can complete these into a full local coordinate
ystem in R3 by defining the associated normal vector:

:= e1 × e2

|e1 × e2|
. (7)

t is customary to normalize n to unit length. The same is not true
or the tangent vectors, which generally are neither of unit length
or in fact perpendicular to each other. It hence makes sense to
uantify the “lack of orthonormality” by defining the tensor

ab := ea · eb, (8)

here the dot “·” refers to the ordinary scalar product of the two
bold faced!) vectors in the embedding three-dimensional space.
his tensor gab, which is evidently symmetric under an exchange
f its two indices, is the first fundamental form of the surface,
lso called the “metric tensor” or simply the “metric.” Both indices
re lower indices, hence gab are the covariant components of an
bstract tensor. The contravariant components gbc are defined by
emanding that they contract with the covariant ones to give the
nit matrix:

abg
bc = gca ≡ ıca. (9)

sing the metric tensor we can create co- and contravariant ver-
ions of any vector or tensor by “raising” or “lowering” indices, for
nstance
a = gabXb or Y c
ab = Y dc

a gbd. (10)

he reader might want to check that the cancellation of Jacobians
orks just fine with these definitions.
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At this point maybe a little side note is appropriate: When ten-
sors with more than one index occur, their sometimes elaborate
positions tend to confuse a young padawan of differential geom-
etry, but it is really quite simple: from left to right the ordering
enumerates the argument of the tensor—one, two, three, and so
on. Just as the rows and columns of a matrix must be distinguished,
so must the index referring to a given argument or “slot” of a ten-
sor. Upstairs vs. downstairs, in contrast, refers to contravariant and
covariant components. For instance, the notation K b

a refers to the
components of a second-rank tensors, the first of which, labeled for
now with “a”, is a covariant component, and the second one, “b”,
is a contravariant one. We can obtain this tensor from its twofold
covariant components by raising the second index. If we instead
were to raise the first component, we would get a different object:

K b
a = Kacgcb not the same as Ka b = Kcbgca. (11a)

Which of the components is labeled “a” and which one is labeled
“b” is a different matter still, since it is the choice of the user how to
name them. In that sense, the following two tensors can be identi-
cal:

K b
a = Kacgcb vs. K a

b = Kbcgca; (11b)

both emerge from the twofold covariant components of a second
rank tensor after lifting the second component—they are simply
differently labeled. These two examples also show that generally
Ka

b
/= K a

b
. The exception is if the tensor is symmetric in its two

indices when they are both co- or contravariant. In that case one
generally does not bother to shift them into their first and second
position and simply writes them on top of each other:

if Kab = Kba then Ka b = K a
b ≡ Kab . (12)

Conversely, writing Ka
b

implies that we know that the tensor is
symmetric—for if it were not, it would be unclear whether lowering
the index “a” should make it the first or the second one.

So much for index ordering. Let us return to the metric tensor
gab. Its determinant is written as g. We can connect it to the tangent
vectors as follows: using the antisymmetric �-symbol to express
the determinant, we can calculate

g = 1
2
�ac�bdgabgcd = g11g22 − g12g21

= g11g22 − (e1 · e2)2 = g11g22[1− cos2(�(e1, e2))]

= |e1|2|e2|2sin2(�(e1, e2)) = |e1 × e2|2.

(13)

Since e1du1 and e2du2 span the local infinitesimal area element
on our surface, this means that the covariant area element can be
written as

dA = |e1du1 × e2du2| = √gdu1du2, (14)

an identity that explains why the metric determinant is so impor-
tant; dA = √gdu1· · ·dud is actually true in any dimension and does
not rely on a cross product.

If there is a first fundamental form, there is probably also a
second one. It is defined as4

Kab = ea ·∂bn ∗= − n ·∂bea = −n ·∂abX. (15)
4 The mathematical literature tends to define the curvature tensor Kab with the
opposite minus sign. There is no deeper significance in that choice, it is convention
whether one chooses curvature away from the normal vector as positive or as neg-
ative. The present convention chooses the former, such that a sphere with outward
pointing normal vector has a positive curvature.
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Fig. 2. Illustration of normal curvature: Pick a point P on a surface and select a
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bian (∂ub/∂ua) for every lower index. Consider for instance the
irection by specifying a tangent vector t. The plane spanned by t and the surface’s
ormal vector n intersects the surface in a planar curve, whose local curvature
|| = 1/R is the normal curvature of the surface at P into the direction t.

s the “extrinsic curvature tensor” (actually, its covariant compo-
ents), and it quantifies the extent of local curvature of the surface

n the embedding three-dimensional space. This is intuitive, since it
ssentially measures how the normal vector changes as one moves
long the surface. Unlike the metric tensor gab, the tensor Kab can
nly be defined if we have a normal vector, and therefore it requires
n “embedding” of the surface into some higher-dimensional space
here, just three-dimensional space). This is why Kab is called the
extrinsic” curvature tensor. The counterpart, objects that do not
equire the normal vector for their definition, are called “intrin-
ic.” We will soon meet a different curvature tensor, the “Riemann
ensor,” which is intrinsic.

More specifically, consider a point P on the surface and a unit
ector t = ta ea at P that is tangent to the surface (see Fig. 2). If
e cut the surface with a plane that contains both n and t, we

reate a cross-sectional curve, whose curvature at P (up to possibly
minus sign) is given by K|| = Kabtatb and which is called the normal

urvature of the surface at P into the direction t. Hence, the local
ormal curvature is a quadratic form, and this means that there will
e two directions along which the curvature is extremal. These so-
alled principal directions pi = pai ea correspond to the eigenvectors
f Kab, and the associated eigenvalues Ki are called the principal
urvatures:

abp
b
i = Kigabpbi , (16a)

r after lifting one index:

a
b p
b
i = Kipai . (16b)

ence, the trace K of the extrinsic curvature tensor is a scalar invari-
nt, called the (total) extrinsic curvature:5

:= gabKab = Kaa = K1
1 + K2

2 = K1 + K2. (17)

lso, since the principal directions are the eigenvectors of the sym-
etric curvature tensor, they are necessarily orthogonal:

a b a b

1 ·p2 = p1ea ·p2eb = p1p2gab = 0. (18)

nowing the principal curvatures, we can easily compute any nor-
al curvature, if we know the angle ϑ of the cutting direction with

5 Historically, people often consider the quantity H = (1/2)K = (1/2)(K1 + K2), which
s called the “mean curvature.” Since nothing is gained by the extra factor of 1/2, I

ill avoid this notation here.
s of Lipids 185 (2015) 11–45

respect to the principal directions. To see this, let us assume with-
out loss of generality that { p1, p2} are normalized, and define our
arbitrary cutting direction t as

t = cosϑ p1 + sinϑ p2. (19)

The normal curvature K|| along t is then given by

K|| = tatbKab
= (cosϑpa1 + sinϑpa2)(cosϑpb1 + sinϑpb2)Kab

= cos2ϑpa1p
b
1Kab + sin2ϑpa2p

b
2Kab

= cos2ϑK1 + sin2ϑK2.

(20)

This result is known as the Theorem of Euler (Kreyszig, 1991; do
Carmo, 1976).

A second invariant of the curvature tensor, this time quadratic, is
obtained by taking the determinant of the matrix Kba . The associated
scalar is called the Gaussian curvature and given by

KG = det(Kba ) = K1K2. (21)

Let us make a brief example: Consider a sphere of radius R,
parametrized according to Eq. (2b). We find

eϑ = R

⎛
⎝ cosϑ cosϕ

cosϑ sinϕ

− sinϑ

⎞
⎠ eϕ = R

⎛
⎝− sinϑ sinϕ

sinϑ cosϕ

0

⎞
⎠ , (22a)

and with the enumeration ϑ = first coordinate and ϕ = second coor-
dinate we get the metric6

gab=̇R2

(
1 0

0 sin2ϑ

)
gab=̇ 1

R2

(
1 0

0 sin−2ϑ

)
. (22b)

The normal vector is given by

n = eϑ × eϕ
|eϑ × eϕ| =

⎛
⎝ sinϑ cosϕ

sinϑ sinϕ

cosϑ

⎞
⎠ = 1

R
r. (22c)

Since ∂ϑ n = R−1 eϑ and ∂ϕ n = R−1 eϕ , we find Kab = R−1gab. The
curvature tensor is diagonal and both eigenvalues are R−1—quite
plausible for a sphere of radius R.

2.5. Covariant differentiation

Not everything with a bunch of indices is a tensor—in the sense
that it would transform according to Eq. (5a) with one Jacobian
(∂ua/∂ub) for every upper index and Eq. (5b) with one inverse Jaco-
6 The dot over the equation sign should remind us of the following subtlety: Writ-
ing the metric tensor gab as a 2×2 matrix is slightly misleading, because gab is not
a matrix. It is a twofold covariant tensor which, if contracted with a contravariant
vector results in a covariant vector. Matrices, in contrast, should take a contravari-
ant vector and turn it into another contravariant vector (or a covariant vector into
another covariant vector). Given this, a second-rank tensor with one covariant and
one contravariant index is a proper matrix. Still, we might want to succinctly write
the components of gab , and we can of course do this in the form of a 2×2 number
scheme. We should just remember that this is a slight misuse of notation.
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∂a
√
g = √g� bba. (28)

7 As a little teaser: apparently the offending bit in Eq. (23) is symmetric in the
indices a and b. This suggests one way of eliminating it, namely to antisymmetrize
one’s expressions. This path leads to the Cartan Calculus of antisymmetric differen-
tial forms and the exterior derivative (Frankel, 2004; Schutz, 1980; Darling, 1994;
Flanders, 1989). Alternatively, one could use a given vector field on a surface and
the “flow” it induces as a means to drag tensors along a surface, which enables one
to compare objects that live in different tangent or cotangent spaces. Applying this
to nearby tensors leads to the Lie derivative (Frankel, 2004; Schutz, 1980; Darling,
1994), a very natural construct for instance in variational problems. Both derivatives
are more “basic” than the covariant derivative we have defined, since they do not
require the manifold to have a metric.

8 Conversely, one is asking for trouble if one were to define a partial deriva-
tive with an upper index, ∂a . Besides the non-tensor issues (which one could
fix by bringing in more Christoffels), we have a definition problem: since
gab[∂b(· · ·)] /= ∂b[gab(· · ·)], raising the index on ∂a does not commute with differ-
entiation, and so it is not even clear what the symbol ∂a would mean: is the index
raised before or after the operator differentiates?

9 For completeness: This equation shows that there is one more subtlety we have
skipped: Clearly,

√
g has no index, so its covariant derivative ought to coincide with√
M. Deserno / Chemistry and P

artial coordinate derivative of a tangent vector, ∂a eb. How does
his object transform? Let us check:

∂aeb =
∂
∂ua

∂X

∂ub
= ∂
∂ua

(
∂X

∂ud
∂ud

∂ub

)

=
(
∂
∂uc

∂X

∂ud

)
∂uc

∂ua
∂ud

∂ub
+ ∂X

∂ud
∂2
ud

∂ua∂ub

= ∂ced
(
∂uc

∂ua

)(
∂ud

∂ub

)
+ ed

∂2
ud

∂ua∂ub
.

(23)

he first term looks alright, two Jacobians for the two indices,
ut the additional second term spoils the correct transformation

aw—∂a eb is not a tensor!
Not only have we just seen that innocent looking objects with

ndices need not be tensors, we have found that this can happen
o very important objects: derivatives of vectors (and, generally,
ensors). But the notion of a derivative is essential, and we need
escue it. The origin of this problem is that on a curvilinear manifold
such as our surface) not just the tensors living on it but also the
oordinate system itself is position dependent, thus a coordinate
erivative will drag the arbitrariness of a parametrization into the
ensor’s derivative, spoiling its covariant nature. This can be fixed
y defining a covariant derivative∇a which—in some sense—simply
ubtracts out the offending bit. The correction works differently
or covariant and contravariant components and has the following
orm:

aX
b = ∂aXb + Xc� bac, (24a)

aYb = ∂aYb − Yc� cab, (24b)

here the new object � c
ab

is called the Christoffel symbol of the
econd kind. It is not a tensor either, in fact, it better not be, for
therwise it could not subtract out the non-covariant remnant of
he first term. It is defined as

abc =
1
2

[∂agbc + ∂bgca − ∂cgab], (25a)

c
ab = gcd�abd, (25b)

nd the symbol � abc is sometimes called the Christoffel symbol of
he first kind. Evidently, � abc is symmetric in its first two indices,
nd hence � c

ab
is symmetric in its lower two indices. Observe that

he Christoffel symbols can be calculated in a fully intrinsic way,
ince they only depend on the metric and its partial derivatives. The
oncept of covariant differentiation is therefore intrinsic: it does
ot require an embedding.

If we have tensors with more indices, then every upper index
ets an extra Christoffel-term such as the one in Eq. (24a), and every
ower index get an extra term like the one in Eq. (24b). For instance,
he covariant derivative of the third-rank tensor Tc

ab
is given by

dT
c
ab = ∂dTcab − Tcib� ida − Tcai� idb + Tiab� cdi. (26)

f there is no index, then no extra Christoffel term is necessary,
ecause partial and covariant derivative are the same for scalars:
a	 =∂a	, or ∇a X =∂a X .

It can be verified by direct calculation that the thus defined
peration on a tensor produces a new object that again transforms
ike a tensor (with one more lower index), but verifying this does
ot answer a number of obvious and deep questions that arise
t this point, such as: where does this construction come from?
hy can it generalize the notion of a derivative to curved sur-

aces? And is this the only way it could be done? Exploring these

ssues quickly leads to concepts which lie at the heart not only of
ifferential geometry but of modern physics (for instance the foun-
ations of gauge theory), but of course the present review cannot
ollow up on any of this. The interested reader will find answers
s of Lipids 185 (2015) 11–45 17

to all these questions in the more mathematics-oriented literature
(Kreyszig, 1991; do Carmo, 1976, 1992; Willmore, 2012; Spivak,
1970, 1975a,b; Lovelock and Rund, 1989; Frankel, 2004; Schutz,
1980; Darling, 1994; Flanders, 1989), but for now knowing them
will not be necessary to follow the rest of this review.7

It seems that the prescription is now this: Whenever we want
to differentiate tensors, we first determine the Christoffel symbols
and amend the partial derivatives with the appropriate extra terms.
Yet, nothing could be further from the truth. Christoffel kerfuffle is
messy and intrinsically parametrization-laden, so the aim really
should be to rewrite all partial derivatives by covariant ones and
from then on exclusively work with the latter throughout the rest
of the calculation. This indeed works rather well, since covariant
derivatives have nice properties that make them easier to work
with than the ordinary partial coordinate derivatives. The Lemma
of Ricci for instance states that (Kreyszig, 1991)

∇agbc = 0, ∇agbc = 0, ∇ag = 0. (27)

In other words, the metric and the metric determinant behave like
constants with respect to covariant differentiation. This in partic-
ular means that raising and lowering indices commutes with taking
covariant derivatives, something that is enormously useful.8

But how do we get hold of covariant derivatives in the first
place? Fortunately, we usually do not have to do anything at all:
they naturally “happen” to us without any particular effort, because
covariant derivatives are the physically meaningful ones. They are
“natural,” while partial ones are not, for the latter are contaminated
by the arbitrariness of one’s specific parametrization. Hence, if in
the process of generalizing a known physical equation to curved
space a derivative is needed, virtually always the correct way to
proceed is to simply replace all ordinary derivatives by covariant
ones.

Another useful property is that covariant differentiation, com-
bined with integration over covariant area elements, follows the
usual rules of partial integration. Let us illustrate this by proving
one example. Using the definition of the Christoffel symbol, one
can verify that9
its partial derivative. But Ricci’s lemma tells us that ∇a g = 0, while Eq. (28) now
claims that the partial derivative does not vanish. What went wrong? The answer
is that

√
g is a tensor density (of weight 1), for which the transformation laws are

slightly different. We shall not go into details here, but the curious reader will find
more information for instance in Lovelock and Rund (1989).
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two more objects, the Ricci tensor Rab and the Ricci scalar R:

Rbd = gacRabcd = KKbd − KbaKad , (42a)
8 M. Deserno / Chemistry and P

ence, we also have

∂a(Xa
√
g)√

g
=
√
g∂aXa + Xa∂a√g√

g

= ∂aXa + Xa� bba = ∇aXa.
(29)

sing this, let us rewrite the following surface integral∫
dAY∇aXa =

∫
d2u
√
gY
∂a(Xa

√
g)√

g

=
∫

d2uY∂a(Xa
√
g)

∗= −
∫

d2u(∂aY)(Xa
√
g)

= −
∫

dAXa∇aY,

(30)

here at “∗” we integrated by parts using the rules for “ordinary”
erivatives and integrals (and also ignored a boundary term) and
here in the last step we used∂aY =∇ aY, which is true because Y is a

calar and requires no extra Christoffels to switch between partial
nd covariant derivatives. Notice that the overall transformation
imply mirrors integration by parts on the covariant level. This also
orks for higher order tensors.

If we do not want to discard the boundary terms, we can
ewrite them in a way that is completely equivalent to the three-
imensional version of Gauss’ theorem. If we have a surface patch
, then a total divergence of a vector va can be rewritten as

P
dA ∇ava =

∮
∂P

ds lava, (31)

here ds is the line element on the boundary ∂P and la is the out-
ard pointing unit normal that is tangential to the surface and
ormal to the integration contour.

From two covariant first order derivatives we can construct a
calar second order one:

= ∇a∇a = gab∇a∇b. (32)

his is nothing but the generalization of the Laplace operator to
urved space (sometimes called the “Laplace–Beltrami operator”).
f we insist on applying it in coordinates, we need to decide what
bject we apply it on. For instance, if we want to apply it on a
calar 	, then using the special choice Xa =∇ a	 = gab∇ b	 = gab∂b	
n Eq. (29), we find

	 = 1√
g

∂
∂ua

[
√
ggab

∂
∂ub

	

]
, (33)

hich the reader might recognize as the expression for how the
aplacian acts on a scalar function in general curvilinear coordi-
ates.

While covariant derivatives seem to work just like ordinary par-
ial ones, there are differences as well. Arguably the most important
ne is that, generally, covariant derivatives do not commute. Instead,
hen applied to a vector, the commutator of covariant derivatives

urns out to be (Spivak, 1970; do Carmo, 1992; Schutz, 1980)

∇a,∇b]Vc = ∇a∇bVc −∇b∇aVc = RabcdVd, (34)

here the tensor Rabcd is the so-called Riemann curvature tensor,
hich we will meet again in a short while.

.6. Gauss, Weingarten, Codazzi, Mainardi
Having a coordinate system { e1, e2, n} on the surface is use-
ul, since we can expand any vector in this local basis. But once we
erform derivatives, we then also need to differentiate the coordi-
ate system. This is closely related to the problem we have solved
s of Lipids 185 (2015) 11–45

in the previous section, and as a consequence, the solution is now
very easy. Consider for instance the derivative of n. It will again
be a vector in three-dimensional space, and so we can expand it in
the local coordinate system. It will also have one more index (from
the differentiation), and so we can write it as ∇an = Xc aec + Yan
with some as yet undetermined tensors Xc a and Ya. Since n2 = 1
we know that 0 =∇ a n2 = 2 n · ∇ a n, and so we must have

0 = n · ∇an = n · (Xc aec + Yan) = Ya, (35)

because n · ec = 0. And from the definition of the (extrinsic) curva-
ture tensor in Eq. (15) we know

Kab = ea · ∇bn = ea · (Xc bec + Ybn) = gacXc b = Xab. (36)

We thereby arrive at the equation of Weingarten:

∇an = Kba eb. (37a)

Similarly, we can derive the equation of Gauss:

∇aeb = −Kabn. (37b)

This brings us to our last point: In the theory of curves, any
choice of curvature and torsion functions results in a unique space
curve (modulo rotations and translations, and ignoring some sub-
tle degeneracy issues) (Kreyszig, 1991; do Carmo, 1976; Kamien,
2002). Is the same also true for surfaces, meaning, if we pick some
(suitably differentiable) metric and curvature tensors, gab and Kab,
do they describe a surface? The answer is in general no, since fur-
ther integrability conditions must be satisfied. As usual, they derive
from the need of some second (partial) derivatives to commute,10

in this case

∂a∂bec
!=∂b∂aec. (38)

Evaluating the two derivatives gives rise to a lengthy equation, both
sides of which have components along n and along ei. The nor-
mal component yields a condition known as the Codazzi–Mainardi
equation, which using covariant derivatives can be written as fol-
lows:

∇aKbc −∇bKac = 0. (39)

The tangential component results in an equation that (also) goes
under the name equation of Gauss:

KacKbd − KadKbc = Rabcd, (40)

where Rabcd is again the Riemann tensor, for which one now arrives
at the following explicit representation:11

Rabcd = ∂c�bda − ∂d�bca +� ebc�ade −� ebd�ace. (41)

Eq. (40) should come as a big surprise. Notice that its right hand side,
the Riemann tensor, can be calculated by only knowing the met-
ric (since the Christoffel symbols can, see Eqs. (25a,b)). This means
that it is an intrinsic quantity—there is no need for an embedding.
This is different from the curvature tensor Kab, which is extrin-
sic because it needs the normal vector for its definition. And yet,
Eq. (40) states that a suitable combination of the extrinsic curvature
tensor is equal to the intrinsic Riemann tensor.

We can contract the Gauss equation twice, thus also introducing
10 As a better-known example, think of thermodynamics, where the Maxwell-
relations are integrability conditions resulting from the fact that second derivatives
of thermodynamic potentials must commute.

11 To be fair, to prove that this tensor is indeed identical to the one which earlier
occurred in Eq. (34) requires some further math.
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= gbdRbd = K2 − KbaKab = 2KG. (42b)

his shows that the Gaussian curvature KG, defined in Eq. (21) as
he determinant of the extrinsic curvature tensor, is in fact fully
ntrinsic. Gauss was so impressed when he discovered this fact, that
e called it the Theorema Egregium, the “outstanding theorem.”

For two-dimensional surfaces the Gaussian curvature is the only
ndependent component of the Riemann tensor: Despite its impres-
ive set of indices, it contains no more information than the Ricci
calar, since we have

abcd
d=2= KG[gacgbd − gadgbc], (43a)

Rab
d=2= 1

2
Rgab = KGgab. (43b)

his is no longer true in higher dimensions, which matters greatly
or general relativity.

.7. Monge gauge

Even though the central aim of this section is to avoid specific
arametrizations, some of them occur so frequently that it is useful
o understand how to translate between them and a purely geo-

etric language. The by far most popular parametrization is Monge
auge, which describes a surface as a height function h(x, y) above
flat reference plane. For instance, Eq. (2a) describes the surface of
sphere in Monge gauge.

Using the results derived so far, we can calculate the geometric
urface objects as they derive from this specific parametrization,
hich we can formalize as

= X(x, y) =

⎛
⎝ x

y

h(x, y)

⎞
⎠ . (44)

he local tangent vectors are then given by

x =

⎛
⎝ 1

0

hx

⎞
⎠ , ey =

⎛
⎝ 0

1

hy

⎞
⎠ , (45)

here we used the abbreviation hx =∂xh. The metric is now given
y

ab=̇
(

1+ h2
x hxhy

hxhy 1+ h2
y

)
, (46a)

ab=̇ 1

1+ h2
x + h2

y

(
1+ h2

y −hxhy
−hxhy 1+ h2

x

)
. (46b)

hese matrices are not diagonal: even though the coordinates on
he base plane are Cartesian, the metric on the surface is clearly
ot. Its determinant is given by

= 1+ h2
x + h2

y = 1+ (∇h)2, (47)

here we defined the two-dimensional gradient operator on the
ase plane, ∇ = (∂x, ∂y).12 Hence, the area element in Monge gauge

s

A =
√

1+ (∇h)2dxdy. (48)

12 The parametrization free expressions such as g = 1 + (∇ h)2 also hold if the base-
lane is not represented in Cartesian coordinates but, say, in polar ones.
s of Lipids 185 (2015) 11–45 19

The normal vector is found to be

n = ex × ey√
g
= 1√

1+ (∇h)2

⎛
⎜⎝
−hx
−hy

1

⎞
⎟⎠ , (49)

which leads to the second fundamental form

Kab=̇ −
1√

1+ (∇h)2

(
hxx hxy

hxy hyy

)
. (50)

From this we can finally calculate the total and the Gaussian cur-
vature:

K = −∇ ·
(

∇h√
1+ (∇h)2

)
, (51a)

KG =
det[∂

2
h]

(1+ (∇h)2)2
, (51b)

where ∂ 2h is the Hessian of the function h(x, y).
A particularly important case occurs if the surface deviates only

weakly from the flat reference plane, such that | ∇ h|
1 and a num-
ber of convenient approximations are possible. In particular, we
find

√
g =

√
1+ (∇h)2 ≈ 1+ 1

2
(∇h)2, (52)

which removes the square root from the area element. Also, the
two curvatures in Eq. (51a,b) simplify to

K = −Tr[∂
2
h] = −∇2h, (53a)

KG = det[∂
2
h]. (53b)

This particular approximation is called “linearized Monge gauge,”
and it is the framework within which the majority of all theoretical
membrane science is done.

3. The Helfrich Hamiltonian

If we take a chemical or atomistic point of view, lipid membranes
are assemblies with numerous inner degrees of freedom that give
rise to larger-scale membrane behavior. Many quantitative models
can be (and have been) developed to account for the local physics
inside a lipid bilayer, and so it might appear surprising that on suf-
ficiently large scales they all reduce to the same claim: the soft
modes of membranes are curvature deformations. This, however,
is nothing but scale-separation in action. If the local physics inside
a bilayer is sufficiently well disentangled from the larger whole-
membrane scale, then the energy, expressed at that larger scale, will
only depend on observables definable on that larger scale. Almost
every detail at the small scale, even though it is ultimately respon-
sible for the very existence of the membrane, vanishes from the
description. It will, however, restrict the types of large-scale theo-
ries that can be written down (for instance by imposing symmetry
constraints), and it will ultimately determine the values of mate-
rial parameters which emerge on the large scale but whose values
cannot be predicted on that scale.

The Helfrich Hamiltonian is a perfect example for constructing
an effective energy functional on the emergent scale of the whole
membrane based on large-scale phenomenological considerations.
Whatever the local physics might be, the form of the large scale

Hamiltonian is essentially determined—kudos to the remarkable
power of physical symmetry principles. In fact, Helfrich himself
largely derived the Hamiltonian this way (Helfrich, 1973). In this
section we will briefly revisit the reasoning, using the language
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Table 1
Independent geometric surface scalars ordered by the number of derivatives, mod-
ulo boundary terms, taken from Ref. (Capovilla et al., 2003).

Order L−n Full set of independent surface scalars

n = 0 1
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˙s = ∂E
∂A
= KA

A− A0

A0
= KAu. (58)
n = 2 K , KG

n = 3 K3, KKG

n = 4 K4, K2KG, K2
G, (∇aK)(∇aK)

eveloped in the previous section, and then discuss a number of
mplications and ramifications.

.1. What symmetry permits

As a first step, we must decide on the permissible and relevant
hysics at the local scale of the lipids. Let us revisit the most crucial
spects:

. Fluidity. If lipids can laterally diffuse past each other but not eas-
ily escape the membrane, one’s energy functional cannot contain
the equivalent of in-plane shear stresses.

. Stretching. Changing the area per lipid is a valid deformation
and will cost energy, but thin plate theory shows that curva-
ture deformations are lower in energy (Landau and Lifshitz,
1999)—see also Eq. (61). The modes we must understand first
are therefore bending deformations.

. Tilting. If lipids can tilt, this degree of freedom can couple to
the shape. We may think of it as a vector-field defined on the
curved surface that couples to the geometry. This term is typi-
cally regarded as small, but it would give rise to modifications
with physical implications (Nelson and Powers, 1993; Powers
and Nelson, 1995; Seifert et al., 1996; Selinger et al., 1996; Müller
et al., 2005a; Tu and Seifert, 2007).

. Bilayer. Whether membranes are bilayers or monolayers does
not matter for the form of the large-scale Hamiltonian, save for
one crucial point: One must know whether lipids can exchange
between the two leaflets of a bilayers, for if they cannot, this cre-
ates a globally conserved quantity (the area difference between
the two leaflets) to which the large-scale Hamiltonian will cou-
ple. This problem was not originally considered by Helfrich but
investigated by later authors (Svetina and Žekš, 1989; Heinrich
et al., 1993; Kralj-Igliç et al., 1993; Miao et al., 1994).

Since the energy is a scalar, it must be constructed from other
calars, and in the present case from objects associated with the
embrane geometry. Fluidity implies that the membrane can have

o memory of any previous shape, nor can the energy functional
e sensitive to in-plane deformations. As such, the energy can only
e a function of its current geometry.

While constructing an approximate large-scale Hamiltonian,
ne usually writes it as a series expansion in some smallness param-
ter. Here, we want the curvature of the membrane to be small
ompared to its inverse thickness, and this naturally leads to an
xpansion in terms of the number of derivatives needed to define
surface scalar, or equivalently, the power n in the dimension

/lengthn of the scalar. The objects we can work with are the two
undamental tensors of the surface, the Riemann tensor, and the
ovariant derivative.

Capovilla et al. (2003) have investigated this question, and their
nswers up to 1/length4 are collected in Table 1. At first sight, this
able seems to be missing quite a number of obvious scalars, but

thers one could write are either not independent of the ones
ritten down, or they are equivalent to them up to a boundary

erm that is usually irrelevant. For instance, the quadratic invari-
nt KabKab is equal to K2−2KG, see Eq. (42b), or by using the set of
s of Lipids 185 (2015) 11–45

identities derived in Section 2.6, one can show that KabRab = KKG or
KbaK

c
b
Kac = K3 − 3KKG, leading to no new invariant. Also, the fourth

order term K�K is equivalent to the term (∇ aK)(∇ aK) up to a
boundary term, since K�K =∇ a(K∇ aK)− (∇ aK)(∇ aK), and the first
term on the right hand side is a total derivative that can be moved
to a boundary upon integrating by parts.

Based on this set of scalars, a natural expansion for a geometric
Hamiltonian would be

H =
∫

dA{C(0) + C(1)K + C(2,1)K2 + C(2,2)KG

+C(3,1)K3 + C(3,2)KKG

+C(4,1)K4 + C(4,2)K2KG + C(4,3)K2
G

+C(4,4)(∇aK)(∇aK)+O(length−5)}.

(54)

In the standard theory one actually caps the expansion at the order
1/length2, or squared curvature, even though higher order theories
have in fact been proposed (Goetz and Helfrich, 1996; Fournier and
Galatola, 1997; Siegel, 2010). With the relabeled constants

C(0) = � + 1
2
�K2

0 , C(1) = −�K0, (55a)

C(2,1) = 1
2
�, C(2,2) = �, (55b)

the Hamiltonian takes the well known form (Helfrich, 1973)

H =
∫

dA
{
� + 1

2
�(K − K0)2 + �KG

}
. (56)

The meaning of the four phenomenological constants in this
expression will be discussed in Section 3.3.

3.2. Model-dependent derivations

The considerations in the previous section used the microscopic
basis of a lipid membrane only inasmuch as they affected general
construction principles of an effective large-sale Hamiltonian. To
contrast this with the opposite viewpoint, this brief section will
show how some actual physical models reproduce the general
form of the Helfrich energy functional, while additionally provid-
ing information about the phenomenological material parameters.
Of course, such models are neither guaranteed to be correct in
all their extra detail, nor are they in fact unique, because the
observable macrophysics does not fully determine the underly-
ing microphysics (a constant source of distress for physicists of the
first-principles couleur).

Let us begin by considering stretching. If we have a flat mem-
brane of area A0, we can (isotropically) stretch it into a membrane of
area A > A0, and to lowest order (linear elasticity) the energy should
behave as

E = 1
2
KA

(A− A0)2

A0
= 1

2
KAA0u

2, (57)

where u is the area strain and KA is called area expansion modulus,
which typically has a value around 240 mN/m for many lipid bilay-
ers (Rawicz et al., 2000).13 Unlike for a liquid–fluid surface tension,
the resulting stress˙s is not constant but indeed linear in the area
strain,
13 Membrane fluctuations add an entropic contribution to the overall membrane
tension, which needs to be subtracted out before the “ground state” term charac-
terized by KA can be assigned.
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his linear stress–strain relation holds until the membrane rup-
ures. The rupture tension depends not only on the lipid, but also
n the loading rate: it can be as low as a few mN/m, and reach val-
es of up to 25 mN/m for long-tailed lipids and fast loading rates
Evans et al., 2003). But as long as the membrane is pulled gently,
he rupture strain is very low, just a few percent. Balancing the
tretching energy (57) against the edge energy of a rupture pore
f radius r, Erim = 2�r� , where � is the free energy of a mem-
rane edge (“edge tension”), shows that in the constant tension
nsemble membrane rupture is a classical nucleation process: a
ore with a radius smaller than the critical radius Rc =� /˙s will
elf-heal, while a bigger one will rupture the membrane (Litster,
975). At the critical size, the pore energy is Ec =�� 2/˙s. With
∼10 pN (Chernomordik et al., 1985; Zhelev and Needham, 1993;

enco et al., 1993; Karatekin et al., 2003) and ˙s∼1 mN/m we
et Rc∼10 nm and Ec∼80kBT. The constant area ensemble gives a
ore curious result: both the rupture strain and the rupture stress

epend weakly on the total membrane area: both are proportional
o A−1/3

0 (Farago, 2003; Tolpekina et al., 2004; Cooke and Deserno,
005).

The possibly simplest model for such an elastic film is thin plate
heory in the framework of linear elasticity (Landau and Lifshitz,
999). If the film has a thickness d and is composed of a material
ith Young modulus E and Poisson ratio , this model predicts

A =
Ed

2(1− )
. (59)

imensional analysis necessitates KA ∝Ed, and the factor 2 arises
ecause the isotropic area strain is twice bigger than the linear
train to which the Young modulus typically refers (the Poisson-
atio-correction is hard to explain intuitively).14 The same model
lso predicts the two bending rigidities (Landau and Lifshitz, 1999):

= Ed3

12(1− 2)
, � = − Ed3

12(1+ )
(one sheet). (60)

ince a membrane of thickness d consists of two sheets of thick-
ess d/2 that can slide and hence cannot transmit tangential stress,
he bending modulus of a bilayer is the sum of the moduli of the
wo individual layers.15 Accounting for this, and combining Eq. (59)
ith Eq. (60), then leads to

= KAd2

24(1+ )
(two thin solid sheets). (61)

nterestingly, the value of the Poisson ratio vanishes from the fre-
uently encountered combination

� + � = KAd
2

24
(two thin solid sheets). (62)

oreover, Eq. (60) implies

�

�
= − 1, (63)

nd since experiments seem to indicate that �/� typically lies in
he range [−1, −0.7] (Lorenzen et al., 1986; Templer et al., 1998;
iegel and Kozlov, 2004; Baumgart et al., 2005; Siegel, 2006, 2008;

emrau et al., 2008), the Poisson ratio should typically fall within
he range ∈ [0, 0.3], in turn implying a denominator in Eq. (61)
round 24 . . .31, consistent with experiments (Rawicz et al., 2000;

14 Some work seems to implicitly assume KA = Ed, but this only holds for incom-
ressible materials for which  = 1/2. Distressingly, I have fallen into the same trap,
nd hence Eq. (61) in the present review will supersede the incorrect Eq. (13) in
eserno (2009).

15 A proof of this will follow below, see Eq. (75c). The point is not trivial, since
he statement is not true for the Gaussian modulus if the individual leaflets have a
onvanishing spontaneous curvature.
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Bloom et al., 1991). A more sophisticated polymer brush theory
predicts the denominator 24 (Rawicz et al., 2000), which is formally
equivalent to  = 0 but really arises from different physics.

Of course, real membranes are two-dimensional fluids, so the
above argument can at most apply to weak bending. We cannot
fix the calculation trivially by setting the shear modulus � to zero,
though, because E∝� and thus all moduli would vanish (Evans,
1974). Goetz et al. (1999) suggest to alternatively think of a bilayer
as stacks of two-dimensional uncoupled fluid sheets, so one can
restrict fluidity to within the sheets. The area expansion modu-
lus and the bending rigidity of such a two-dimensional layer can
be written as �2d +�2d and (�2d + 2�2d)d2/12, respectively, where
�2d and�2d are the two-dimensional Lamé-coefficients, and where
�2d = 0 in the fluid case. Assuming this, and again decoupling the
two leaflets, they find (Goetz et al., 1999)

� = KAd
2

48
(two thin 2d-fluid sheets). (64)

This seems to be slightly too small compared to experiment, but
it describes their numerical simulations well (Goetz et al., 1999),
and there is at any rate a certain leeway (both in simulation and
in experiment) in the definition of d. Unfortunately, it is not clear
how one can derive the Gaussian modulus from this analysis.

Since �/KA ∝d2, bending rigidities vanish more quickly in the
limit d→0 than the stretching modulus, and hence the soft modes
of thin plates are bending deformations. This is how we can derive
Eq. (1), used in the introduction to illustrate in what sense bending
is lower in energy than stretching: Set the stretching energy (57)
equal to the energy of a closed spherical vesicle, which is 8�� + 4��.
Using � ∝ KAd2/N, one can further sharpen Eq. (1). With Eq. (62) we
get Rs ≈ d/(2

√
3s), which for s = 1% becomes Rs≈30 d, showing how

the stretching-comparable curvature radius is a few tens times the
membrane thickness, and thus remarkably small.

This simple continuum theory is still fairly crude, for membranes
are neither thin continuum solids nor layered isotropic liquids.
Attempts to account for their underlying structural physics come in
a number of different flavors. For instance, the tilt degree of freedom
of individual lipids adds bend- and splay-contributions to the local
elastic energy (Hamm and Kozlov, 1998, 2000; May and Ben-Shaul,
1999; May, 2000; Kozlovsky and Kozlov, 2002), whose relation to
the curvature-elastic moduli has recently found a renewed interest
(May et al., 2007a,b; Watson and Brown, 2010; Watson et al., 2011).
A few years back a systematic procedure to derive a fluid mem-
brane Hamiltonian by dimensional reduction has been proposed
(Zurlo, 2007; Deseri et al., 2008), starting from a fluid surface of
finite thickness but internal structure. Unsurprisingly, large-scale
curvature elastic behavior is recovered, but the material’s micro-
physics adds new terms. For instance, a fluid–gel transition would
change the thickness d of the bilayer, which incurs an energetic con-
tribution proportional to (∇ d)2, and this term is especially relevant
at domain boundaries between phases, contributing to the line ten-
sion (Deseri and Zurlo, 2013). Such terms could be added “by hand”
as additional fields to the Helfrich functional, but here they follow
naturally from the model, because the physics to describe them is
part of the microscopic Hamiltonian. The approaches in Lomholt
and Miao (2006), Bitbol et al. (2012) and Maleki et al. (2013) follow
a similar spirit, and Rangamani et al. (2013) adds the tilt degree of
freedom to this framework.

3.3. The phenomenological constants

3.3.1. Surface tension

The first constant in the Helfrich Hamiltonian, �, is seemingly

the simplest one; and yet this “surface tension” term is fraught with
a number of curious subtleties worth unraveling. Since � is a con-
stant, this term can simply be written as �A, where A is the total
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rea of the membrane, and so it looks like a classical thermody-
amic surface tension. But if the area per lipid is constant, then
he total area is also constant and proportional to the total number
f lipids, in which case � is directly proportional to their chemical
otential.

It has therefore been pointed out (Brochard et al., 1976; David
nd Leibler, 1991) that one ought to distinguish the total mem-
rane area A from the projected membrane area Ap. The latter can
e pictured as the area of a planar frame that spans the membrane,
nd the membrane tension really is the thermodynamic variable
onjugate to Ap. Usually this is discussed within Monge gauge (see
ection 2.7), where both views give rise to the same equation, but a
ifferent interpretation. Since the difference (or “excess area”)�A
etween total area and projected area can be written as

�A =
∫

dAp{
√
g − 1} =

∫
dAp

{√
1+ (∇h)2 − 1

}
≈
∫

dAp
1
2

(∇h)2,
(65)

ne usually finds a term (1/2)�(∇ h)2 in linearized Monge gauge,
rrespective of whether the projected area is constant and the total
rea is varying, or vice versa.

Unlike the surface tension of water, the tension � of a bilayer is
ot a material parameter but reflects its intrinsic isotropic tangen-
ial stress, and this depends on mechanical constraints the bilayer
s subject to—such as its boundary conditions, or whether a closed
esicle is osmotically swollen. For instance, a piece of bilayer spread
cross a hole in some substrate is subject to a (usually large) ten-
ion, the origin of which is the adhesion energy of the bilayer to the
ubstrate surrounding the hole. Notice also that the constant term
(0) in Eq. (55a) has a contribution from the spontaneous membrane
urvature. Its role as a “spontaneous tension” has recently been dis-
ussed by Lipowsky (2013, 2014), and we will come back to it in
ection 4.6.1.

In the functional (56) the parameter � can also be interpreted as
Lagrange multiplier that helps to fix the overall area A, for instance

f one tries to find solutions minimizing the energy. In that case �
ecomes a function of all other constraints, such as total area or
olume of the vesicle. If, on the other hand, � is prescribed as the
ndependent thermodynamic variable, it is considered a constant.
n that case the surface tension term �A or ��A is linear in the area,

eaning if one pulls in twice the area from some lipid reservoir, one
ays twice the energetic cost. This is very different from the bilayer
ension (57) that ensues if one actually stretches a bilayer such that
he area per lipid begins to change.

Finally, it is important to note that the tension � does not coin-
ide with the stress that resides in the membrane. What types of
orces a material can transduce depends on its constitutive equa-
ion, and curvature elastic surfaces permit a much richer behavior
han what one is used to from fluid interfaces or soap films. All this
ill become clearer when we deal with the membrane stress tensor

n Section 4.

.3.2. Spontaneous curvature
The second term in the Helfrich Hamiltonian quadratically

enalizes the deviation of the total curvature K from the sponta-
eous curvature K0, a constant of dimension 1/length. Looking at
q. (55a), this term stems from the linear order in the expansion
54), and it can only occur when the bilayer-leaflet (“up-down”)
ymmetry is broken. Recall that the definition of the curvature ten-
or Kab includes an arbitrary sign convention, deciding whether the

urvature of a sphere with outward pointing unit normal is counted
s positive or negative. If both sides of the membrane are indistin-
uishable, this choice of the normal vector n cannot have physically
bservable consequences, and so the linear term (which would
s of Lipids 185 (2015) 11–45

flip its sign if we swapped the irrelevant convention) must van-
ish. Hence, K0 = 0 for up-down symmetric membranes. However, if
we can distinguish the two sides, the two possible normal vectors
are no longer equivalent. For instance, one of the two leaflets might
be enriched in a particular lipid species, or the composition of the
solvent is not identical on the two sides (Döbereiner et al., 1999),
allowing us to fix the direction of n based on a physical observ-
able. Of course, this again requires an arbitrary choice, but now the
two different choices are physically distinguishable, hence there is
no need for the Hamiltonian to be invariant when swapping the
sign of n, and this permits the linear term to show up.

Annoyingly, two different conventions exist for quantifying the
spontaneous curvature. Expressed in terms of the principal cur-
vatures, one encounters the total curvature term in one of two
different forms:

1
2
�(K1 + K2 − K0)2 ←→ 1

2
�(K1 + K2 − 2H0)2

1
2
�(K − K0)2 ←→ 2�(H −H0)2,

(66)

where H = K/2 and H0 = K0/2. To avoid misunderstandings, it is
therefore vital to find out, whether by “spontaneous curvature” a
given author refers to the spontaneous total curvature K0 or the
spontaneous mean curvature H0. Sadly, not all authors make this
entirely clear, so the reader should be wary of analytical or numer-
ical discrepancies involving factors of two. To make matters worse,
the different sign conventions for the curvature K also result in dif-
ferent ways for including the spontaneous curvature term, so that
one also finds it written as (c + c0)2, for instance in Tu and Ou-Yang
(2003).

Observe that no spontaneous Gaussian curvature is possible on
the quadratic level: a term proportional to (KG−KG,0)2 would be
quartic. However, does the spontaneous curvature have to be a
scalar or could we have a spontaneous curvature tensorK (0)

ab
? Such a

new tensor would offer the possibility of a linear term KabK (0)
ab

, but
the physics that would give rise to the spontaneous curvature ten-
sor would have to be investigated more closely. For instance, since
lipids are not axisymmetric (they have two tails), any local ordering
of the vectors joining the two tails would break the local rotational
symmetry, something that could be captured by a traceless ten-
sor whose larger eigenvector aligns with the direction of ordering
and whose magnitude captures the order parameter—much as one
would do in the Landau-de Gennes theory for liquid crystals (de
Gennes and Prost, 1993). In a slightly simpler (but symmetrically
not entirely equivalent) way one could distinguish that direction
with a tangential director field m = ma ea, now mimicking the
Frank–Oseen theory for liquid crystals (de Gennes and Prost, 1993).
Such vectors would permit a number of extra terms in the free
energy functional. Some terms would couple the direction with
the geometry, most notably Kabmamb, others would capture the
physics of the order itself, for instance in the form of a classical
Ginzburg-Landau expansion, à la

E[m] = 1
2
r(∇ama)2 + 1

2
r′(∇amb)(∇amb)

+1
2
t(mama)+ 1

4!
u(mama)

2.

(67)

Indeed, theories of this second type have been investigated in the
past (Nelson and Powers, 1993; Powers and Nelson, 1995; Seifert
et al., 1996; Selinger et al., 1996; Müller et al., 2005a; Tu and Seifert,

2007). However, since the vector m can also be viewed as indi-
cating lipid tilt, these theories have been devised to understand
tilt–curvature coupling, not whether untilted but not axisymmetric
lipids endow a membrane with a different local anisotropy.
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.3.3. Curvature moduli
The two curvature moduli� and�multiply the two independent

uadratic curvature scalars K2 and KG (the first one shifted by K0).
he parameter � is usually referred to as the bending modulus or
he bending rigidity, while � is called Gaussian curvature modulus or
addle splay modulus.16 Notice that KG has no fixed sign; it is not
ositive definite, but of course the entire Hamiltonian has to be.
ince this feature does not involve the constant and linear term,
e can consider it based on the two quadratic invariants alone.
sing the two principal curvatures K1 and K2, we can write

E = 1
2
�K2 + �KG =

1
2

[�(K1 + K2)2 + 2�K1K2]

= 1
2

(K1, K2)

(
� � + �

� + � �

)(
K1

K2

)
!≥0.

(68)

or this inequality to hold, we need the eigenvalues �± = � ± (� +
) of the matrix to be non-negative, and this implies

2� ≤ � ≤ 0. (69)

he bending modulus is positive, while the Gaussian curvature
odulus is negative but larger than −2�.17 The model-dependent

esult from Eq. (63) implies the stronger constraint −2 ≤ �/� ≤
1/2 (because −1≤≤1/2 (Landau and Lifshitz, 1999)), and typi-

ally −1 ≤ �/� ≤ −1/2 (because  is virtually always positive), but
hese limits should not be taken too seriously given the crudeness
f solid thin plate theory for the present situation. Making more
hysical assumptions about the shapes of lipids, the range −1 ≤
m/�m ≤ 0 for the monolayer moduli has been derived (Templer
t al., 1998).18

There is no physical reason for � to be close to zero, and indeed
�| and� tend to be comparable in magnitude (Lorenzen et al., 1986;
empler et al., 1998; Siegel and Kozlov, 2004; Baumgart et al., 2005;
iegel, 2006, 2008; Semrau et al., 2008). From this one might incor-
ectly conclude that both moduli affect a membrane’s shape about
qually strongly, but in truth the Gaussian term has often no influ-
nce. The reason for this is a fascinating result from differential
eometry, known as the Gauss–Bonnet theorem. IfP is a membrane
atch and ∂P is its boundary, then this theorem states that

P
dAKG +

∫
∂P

ds kg = 2��P, (70)

here kg is the so-called geodesic curvature along the membrane’s
oundary (a covariant geometric definition of this quantity will be
iven in Eq. (107) below) and �P is the Euler characteristic of the
atch P (Kreyszig, 1991; do Carmo, 1976; Spivak, 1975a; Kamien,
002). The important point is that the surface integral over the

aussian curvature can be decomposed into a boundary contri-
ution (which in particular vanishes if there is no boundary, such
s for closed vesicles), and a term proportional to �P, which is a
opological invariant that is independent of the actual shape. As

16 The name “saddle splay modulus” stems form the following observation: Con-
ider a local curvature deformation for which the principal curvatures satisfy
1 =−K2 /= 0. The membrane bends up along one principal direction and equally
trongly down along the perpendicular direction, thereby locally acquiring the shape
f a saddle. Since KG = K1K2 < 0, the Gaussian curvature term contributes to the energy
f this saddle, but the normal bending term does not if K0 = 0 (since K = K1 + K2 = 0).
owever, the Gaussian curvature term also contributes at non-saddle-like deforma-

ions, so the notion that it is particularly relevant for saddles is misleading. By the
ame logic, one could call � the “cylindrical rigidity”, since it contributes at locally
ylindrical deformations (K1 /= 0, K2 = 0) at which KG vanishes. (In fact, Landau and
ifshitz do just that (Landau and Lifshitz, 1999).)
17 This argument is presented in Safran (1994), but the final result given there is
nfortunately incorrect.
18 Section 3.4 will discuss in more detail the question how bilayer and monolayer
arameters are related.
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a consequence, both the shape equation for membranes and the
stresses transmitted through them do not depend on �, as we will
see in Section 4, and this makes it hard to find the value of the
Gaussian curvature modulus, both in experiment (Lorenzen et al.,
1986; Templer et al., 1998; Siegel and Kozlov, 2004; Baumgart
et al., 2005; Siegel, 2006, 2008; Semrau et al., 2008) and in sim-
ulation (Brannigan and Brown, 2007; den Otter, 2009; Hu et al.,
2012, 2013a). There are still important situations where �matters,
though, most prominently membrane fission and fusion, which
happen for biomembranes all the time, since these change the
topology: Fission increases �P by 2, fusion reduces it by 2, thus giv-
ing rise to an energy change of magnitude |4��|. With � ≈ −� ≈
−20kBT (Seifert and Lipowsky, 1995; Evans et al., 2003; Nagle,
2013), this amounts to a total energy change of plus (fusion) or
minus (fission) 250kBT from the topological term alone—anything
but negligible.

The Gauss–Bonnet theorem also shows why for many practi-
cal cases the Hamiltonian originally proposed by Canham (1970)
is equivalent to the one proposed by Helfrich (1973). Canham also
wanted to express the energy in terms of the principal curvatures,
so he wrote a term proportional to (K1)2 + (K2)2 = KbaKab , which is
equal to the trace of the square of the curvature tensor and hence
obviously a scalar. Since the twice contracted equation of Gauss,
Eq. (42b), states that KbaK

a
b
= K2 − 2KG, we see that for the common

case K0 = 0 Canham’s Hamiltonian differs from Helfrich’s one only
by the often irrelevant Gaussian contribution, and if additionally
� = −�, the two Hamiltonians are actually identical.

Since � is not material dependent, K0 frequently vanishes for
symmetry reasons, and � largely restricts to topological effects, the
bending modulus � emerges as the probably single most impor-
tant phenomenological parameter necessary to characterize and
describe membranes on large scales. How do we find its value?
One possible way would be to predict it based on finer-scale the-
ories of lipid bilayers. For instance, theories amending the bilayer
shape by a lipid orientation degree of freedom (Hamm and Kozlov,
1998, 2000; May et al., 2007a,b; Watson and Brown, 2010; Watson
et al., 2011, 2012) provide connections between the smaller scale
moduli coupling to orientation and tilt and the bending moduli. At
even higher resolution mean-field techniques adapted from poly-
mer theory have been used to describe the lipid tails and infer
large-scale elastic properties (Ben Shaul et al., 1985; Szleifer et al.,
1985, 1988, 1990; Rawicz et al., 2000; Uline and Szleifer, 2012).
The highest possible resolution is molecular modeling, and at this
level analytical predictions give way to results obtained from com-
puter simulations, which study a variety of physical observables
that are sensitive to the bending rigidity. This includes monitor-
ing membrane shape undulations (Goetz et al., 1999; Lindahl and
Edholm, 2000; Marrink and Mark, 2001; Ayton and Voth, 2002;
Hofsäß et al., 2003; Farago, 2003; Marrink et al., 2004; Brannigan
et al., 2004, 2005; Wang and Frenkel, 2005; Cooke et al., 2005;
Cooke and Deserno, 2005; May et al., 2007a,b; Wang and Deserno,
2010a,b; Watson and Brown, 2010; Watson et al., 2011; Brandt
et al., 2011; Shiba and Noguchi, 2011), pulling tethers (Harmandaris
and Deserno, 2006; Arkhipov et al., 2008; Shiba and Noguchi, 2011;
Baoukina et al., 2012), or buckling membranes (Noguchi, 2011; Hu
et al., 2013b). Alternatively, one can measure the bending rigidity
in experiments (Nagle, 2013; Dimova, 2014; Bassereau et al., 2014),
for instance by monitoring shape undulations by optical (Brochard
and Lennon, 1975; Brochard et al., 1976; Schneider et al., 1984a,b;
Faucon et al., 1989; Henriksen et al., 2004) or scattering (Liu and
Nagle, 2004; Pan et al., 2008a, 2008, 2009) techniques, pulling
tethers (Cuvelier et al., 2005; Tian and Baumgart, 2008; Heinrich

et al., 2010; Baumgart et al., 2011), or measuring the low-tension
stress–strain relation (Evans and Rawicz, 1990).

Without bending rigidity, the surface is only characterized by
a surface tension �. Conversely, if the tension vanishes, we have
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Fig. 3. The pivotal plane (or surface of inextension) for each of the two monolayers
4 M. Deserno / Chemistry and P

he pure bending case. If both terms are present, the problem is
ore complicated, but the pure-bending and pure-tension cases

merge as limits for small and large length scales, respectively, with
characteristic crossover length given by

:=
√
�/�. (71)

n length scales smaller than � the tension contribution to the
nergy becomes subdominant to the bending terms, and on length
cales large than � it is the other way around and the tension term
ominates. For instance, taking the value of the surface tension
ypical for cell membranes, �∼0.02 mN/m (Morris and Homann,
001), and �∼20kBT (Seifert and Lipowsky, 1995; Evans et al.,
003; Nagle, 2013), we get�∼64 nm. Hence, for the high curvature
eformations that occur during cellular events such as endocytosis,
udding, or vesiculation, the bending terms are very much rele-
ant, but on the micron scale such biomembranes are essentially
urface tension dominated structures. Under substantially higher
ensions, say �∼1 mN/m, the characteristic length drops below
0 nm, and bending terms only matter on length scales that are
omparable to membrane thickness. In other words, they matter
n scales for which the very idea that quadratic bending theory is
ufficient becomes questionable itself.

.4. Bilayer vs. monolayer

Lipid bilayers consist of two lipid monolayers which can slide
ast each other without a cost in free energy. Hence, the same argu-
ents that apply to the bilayer also hold for each single monolayer,

nd so there must be a monolayer Hamiltonian of the form

m =
∫

dA′
{
�m + 1

2
�m(K ′ − Km,0)2 + �mK

′
G

}
, (72)

here the subscripts “m” on the parameters and the primes on
he geometric scalars indicate that these quantities refer to a

onolayer. We now want to explore how monolayer and bilayer
arameters are related.

The most straightforward difference is that monolayers have no
bvious up-down symmetry, hence the spontaneous monolayer
urvature Km,0 is typically nonzero. Since this parameter origi-
ates from the asymmetric shape of the lipids, it is also sometimes
eferred to as the lipid curvature. The same unpleasant factor-
f-two confusion discussed for the bilayer case (see Eq. (66)) also
eleaguers the monolayer spontaneous curvature. As far as the sign

s concerned, the usual convention is that a lipid with a positive
pontaneous curvature is one with a large head, so that it prefers
o reside in a leaflet whose hydrophilic side is convex (curved like
he outside of a sphere).

What about tension and curvature moduli? Given that a bilayer
s a stack of two relatively independent monolayers, one might
aïvely think that the bilayer values are simply the sum of the
onolayer values, or if the two leaflets are identical, that the bilayer

alues are twice as big. This is not generally true, though, for quite
n interesting reason: When writing equations such as (56) or (72)
e represent a physical surface of finite thickness with an idealized
athematical surface. Where within the actual physical surface do
e place the idealized mathematical one? For a bilayer the sur-

ace between the two leaflets (“midplane”) is the obvious choice.
or monolayers the situation is more subtle. Imagine bending a
onolayer, or for that matter, any thin plate of finite thickness.
pon bending, the “outside” surface is stretched, while the “inside”

urface is compressed, and in fact the total volume integral of

his elastic energy ought to result in the overall curvature energy.
learly, between the outside and the inside there will be a surface
here neither stretching nor compression happens, and this sur-

ace is called the “surface of inextension” or sometimes also the
in a bilayer (dashed curves) is located a distance z0 away from the bilayer’s midplane
(solid curve).

“pivotal plane.” It is a frequently followed convention to refer to
this surface when discussing bending of monolayers.19 However,
the pivotal plane of a bilayer’s leaflet is a finite distance z0 away
from the midplane—see Fig. 3. This matters because area elements
dA and the curvatures K and KG depend on that reference. Picture
two spheres with radii R and R′ = R + z0, with z0 > 0. The area element
dA′ of the bigger sphere is larger than the element dA of the smaller
one, namely by a factor (1 + z0/R)2; moreover, its total curvature
is different by a factor (1 + z0/R)−1, and its Gaussian curvature dif-
fers by a factor (1 + z0/R)−2. More generally, if we construct a new
“parallel surface” Y (u1, u2) = X(u1, u2) + z0 n(u1, u2), there exists
a beautiful exact relation between the area elements and the cur-
vatures on these two surfaces (Spivak, 1975a; Willmore, 2012; do
Carmo, 1976):

dA′

dA
= 1+ Kz0 + KGz

2
0, (73a)

K ′G
KG
= 1

1+ Kz0 + KGz2
0

, (73b)

K ′

K
= 1+ (2KG/K)z0

1+ Kz0 + KGz2
0

. (73c)

These identities generalize the special case of spheres mentioned
above. Observe the curious fact that dAKG = dA′K ′G, meaning that
the Gaussian curvature combined with the area element stays
invariant when moving along layers of parallel surfaces.20

Using the identities (73a–c)—in fact, their expansions to first
order in z0 suffices—we can rewrite the monolayer energy from
Eq. (72), which refers to the surface of inextension (the “primed”

19 It is not the only possible choice, though. Recall that the energy of a mem-
brane contains both quadratic bending (56) and stretching (57) terms, so a general
quadratic ought to include a cross term of the form �×(A−A0)K. It turns out that
there is a special choice, called the “neutral surface,” at which the cross term van-
ishes, but unfortunately this surface does not coincide with the pivotal plane (Kozlov
and Winterhalter, 1991).

20 Lest the reader thinks this is trivial: If we perform a simple scaling of the surface

by some factor, both dA KG and dA K2 remain invariant. But parallel surfaces do not
just differ by an overall scaling factor. The special example of a sphere is misleading
in this regard, and the reader might want to contemplate instead what parallel
surfaces of a torus would look like.
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Heinrich et al., 2010; Baumgart et al., 2011). In simulations of coarse
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uantities), while expressing the geometry with respect to the
ilayer’s midplane. A straightforward calculation gives

Hm =
∫

dA′
{
�m + 1

2
�m(K ′ − Km,0)2 + �mK

′
G

}

=
∫

dA
{[
�m + 1

2
�mK

2
m,0

]
+
[
−�mKm,0 +

(
�m + 1

2
�mK

2
m,0

)
z0

]
K

+ 1
2
�mK

2 + [�m − 2�mKm,0z0]KG

+higher order curvature terms
}
.

(74)

he total bilayer energy is the sum of two such contributions. If the
wo monolayers are identical, the elastic constants and the value of
0 (which is also a material parameter) are the same, provided we
hoose the normal vector of the opposite leaflet also in the opposite
irections. This flip in n leaves K2 and KG invariant, but switches
he sign of K. After adding the two leaflets, a comparison with the
ilayer energy (56) and the identifications from Eq. (55a,b) leads to

� = 2
[
�m + 1

2
�mK

2
m,0

]
, (75a)

0 = 0, (75b)

� = 2�m, (75c)

� = 2[�m − 2�mKm,0z0]. (75d)

s expected, the spontaneous curvature vanishes, and the bilayer
ending modulus is twice the monolayer bending modulus.21 But
wo possibly unexpected things happened. First, the Gaussian
urvature modulus picks up an additional correction due to the
onolayer spontaneous curvature (Helfrich, 1994), which is pro-

ortional to z0 and thus reveals its origin to be the difference
etween the two reference surfaces. Second, the tension picks
p a contribution that may be viewed as the “zero-point energy”
f a flat monolayer, the elastic energy it has due to the spon-
aneous curvature of its constituent lipids. It is the monolayer
quivalent of the “spontaneous tension” discussed by Lipowsky
2013, 2014), but notice that it contributes to the bilayer tension
ven though it does not create a bilayer spontaneous curvature. Its
agnitude is typically small; for instance, membranes composed

f the lipid DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine)
ave a monolayer rigidity of �m =�/2≈10kBT (Nagle et al., 2014)
nd a spontaneous curvature of Km,0≈0.05 . . .0.07 nm−1 (Szule
t al., 2002), from which we get an extra contribution of about
.01 mN/m. Taking an area per lipid of about a� = 0.72 nm2 (Liu
nd Nagle, 2004) this translates to an extra energy per lipid of
bout Em,0,� = (1/2)�mK2

m,0a� ≈ 0.01kBT , which is much smaller
ompared to the thermal energy, let alone the aggregation free
nergy per lipid. In fact, one can check that Em,0,�∼ kBT requires
−1
m,0 to become comparable to the membrane thickness, in which
ase the preferred aggregate shape is likely not a planar membrane
Israelachvili et al., 1976).

Evidently, the term (1/2)�mK2
m,0 by construction leads to a con-

ribution that is always proportional to the total area or indeed the

umber of lipids, so in line with the discussion in Section 3.3.1 it
eems most appropriate to regard it as part of the chemical poten-
ial of the lipids, the elastic contribution to the condensed state.

21 Still, � = 2�m is not trivial at all. The fact that in Eq. (74) the prefactor in front of
he K2 term is simply �m/2 arises due to an intriguing cancelation between the shifts
n dA and (K−Km,0)2.
s of Lipids 185 (2015) 11–45 25

Since it only shifts the zero-point energy of the bilayer, it can be
disregarded if one only cares about an already existing bilayer and
its shape changes. However, integrated over the entire membrane
this contribution need not be small, especially if Km,0 is not as small
as the value given above for DOPC, and it has been suggested to play
a role in the total energetics of a cell’s membrane stock (Hague et al.,
2013).

Finally, let us comment on condition (4) discussed at the begin-
ning of Section 3. If lipids cannot change between the two leaflets
of a bilayer, the lipid number in the two monolayers is individ-
ually conserved. This matters because shape changes will change
the areas of the two leaflets and thus create nonlocal stretching
terms. From Eq. (73a) we find the area of the outer (“+z0”) or inner
(“−z0”) leaflet, as measured at the pivotal plane:

A′± =
∫

dA′± =
∫

dA(1± Kz0 + KGz
2
0)

= A± z0
∫

dAK + z2
0

∫
dAKG,

(76)

and so the area difference between the two leaflets is

�A = A′+ − A′− = 2z0

∫
dAK. (77)

It is worth observing that this equation rests on exact results for
parallel surfaces and hence makes no smallness assumption about
z0.

In the bilayer couple model (Svetina and Žekš, 1989; Heinrich
et al., 1993; Kralj-Igliç et al., 1993; Miao et al., 1994) �A is penal-
ized by a stretching term analogous to Eq. (57). Since the resulting
expression does not involve the integral over the square of K but
rather the square of the integral over K, it amounts to a nonlocal
bending contribution.

3.5. Higher order corrections

Constructing a phenomenological energy functional for mem-
branes based on their surface geometry naturally leads to the
expansion in Eq. (54). Terminating it at quadratic order yields the
Helfrich Hamiltonian (56), but there is no reason to assume that
higher order terms vanish, and indeed such terms and their physical
implications have been investigated previously (Goetz and Helfrich,
1996; Fournier and Galatola, 1997; Siegel, 2010). The question is,
how relevant are the energetic contributions associated with it
under “normal” circumstances?

Since Eq. (54) is ultimately a small-curvature-expansion, one
must expect higher order corrections to become relevant at strong
bending. Dimensional analysis shows that the ratio of the moduli
multiplying the quartic terms to the moduli multiplying the
quadratic terms is the square of a length, and the most obvious
natural length that could be involved here is the bilayer thick-
ness (or z0, which is about 2–3 times smaller). If this is true, it
implies that quartic terms will only compete with the quadratic
ones at curvature radii comparable to the membrane thickness.
Indeed, experiments on highly curved membrane tethers suggest
that quadratic Helfrich theory is applicable down to this highly
curved regime (Cuvelier et al., 2005; Tian and Baumgart, 2008;
grained models a slight softening has been reported (Harmandaris
and Deserno, 2006; Hu et al., 2013b; Shiba and Noguchi, 2011),22

22 The accuracy of the results in Harmandaris and Deserno (2006) was not good
enough to justify the inclusion of quartic terms, but later more precise measure-
ments (Hu et al., 2013b) more convincingly support their existence. Re-analyzing
the old results in Harmandaris and Deserno (2006) including a quartic term in the
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hile self consistent field theory calculations of block-copolymer
embranes have found a slight stiffening (Li et al., 2013a).
Higher order terms must enter the scene once we push the Hel-

rich Hamiltonian beyond its stability limit, for instance by violating
he constraint in Eq. (69). From Eq. (75d) we see that the “easiest”
ay to do this is to change the lipid spontaneous curvature (or to

ook at a sequence of amphiphiles for which Km,0 varies). At suf-
ciently large positive values of Km,0 the value of �/� might drop
elow −2, and then the bilayer disintegrates in favor of cylindri-
al or even spherical micelles, in accord with simple geometric
rguments for how the packing of amphiphiles determines the
ggregate geometry (Israelachvili et al., 1976). Conversely, the lipid
urvature might render the Gaussian curvature modulus � posi-
ive. In this case membranes do not structurally disintegrate but
ssume bicontinuous phases. The reason is that for� > 0 the Gauss-
an curvature term �KG prefers saddle shapes (for which KG < 0),
nd bicontinuous phases (or their highly symmetric realizations as
riply periodic (almost) minimal surfaces, such as the gyroid) essen-
ially consist only of saddles. Hence, the total curvature term 1

2�K
2

ecomes very small and the Gaussian term very negative. What
hen stops a finite membrane from creating infinitely many sad-
les? The physical answer is that it has a finite thickness. In terms
f the Hamiltonian, the answer is that additional quartic terms can
olve the problem that for � > 0 the quadratic functional is no
onger bounded below, thus solving the problems that led to the
nequality (69) (Siegel, 2010). Both answers are essentially equiva-
ent if, indeed, the thickness of the membrane is the physical reason
or the quartic terms.

It is interesting to note that higher order terms enter the Hamil-
onian of lipid bilayer membranes for two different reasons. For one
hing, they naturally arise in the expansion of the energy (54). But
hey also emerge from the monolayer–bilayer connection explored
n Section 3.4. Even if, miraculously, the Helfrich Hamiltonian for a

onolayer were strictly quadratic in the curvatures, the geometric
ranslation from two monolayers into a single bilayer would create
umerous higher order curvature corrections to Eq. (74). Indeed,
iegel points out that a consistent theory for understanding the
tability of bicontinuous phases needs both the “physical” and the
geometric” corrections in order to quantitatively explain experi-
ental data (Siegel, 2010).
Finally, it is worthwhile to remember that whenever we said

quadratic,” we meant “quadratic in the curvatures.” This does
ot mean that the Hamiltonian, once translated into a particular
arametrization, is also quadratic and hence “simple.” For instance,
he area element dA and the total curvature K in Monge gauge are
retty nonlinear functions—see Eqs. (48) and (51a)—and only upon
xpanding them for small gradients do we arrive at a Hamiltonian
hat is also quadratic in the parametrization. Pushing the expansion
f
√
gK2 to higher order, one finds (Kleinert, 1986)

dAK2 =
∫

d2x
{

(hii)
2 − 1

2
(hii)

2hjhj − 2hiihjhjkhk +O(h6)
}
,

(78)
here the indices are abbreviations for partial derivatives
hi =∂h/∂xi, etc.) and we sum over repeated ones.23 Curiously, these
igher order terms also affect the lower order ones, since their

nalysis indeed gives results for the ordinary bending modulus � that agree better
ith independent measurements.

23 Why do we sum even though the indices are not upstairs–downstairs? Because
or Cartesian coordinates the difference between covariant and contravariant com-
onents vanishes, and hence one generally does not bother to distribute the indices
p and down.
s of Lipids 185 (2015) 11–45

thermal fluctuations renormalize the curvature moduli (Helfrich,
1985; Kleinert, 1986; Förster, 1986).

4. The stress tensor of lipid membranes

Now that we have a Hamiltonian describing the energy of
membranes, we can predict their physical behavior under a great
number of circumstances, provided we can mathematically ana-
lyze the implications of the functional (56). Two questions are most
pressing: First, if membranes strive to minimize that functional,
what are the shapes they should assume? And second, what are
the stresses that are associated with curvature deformations? Since
equilibrium shapes should have their stresses “relaxed,” we expect
these questions to be related, and indeed they are: For equilib-
rium shapes the local force density vanishes, which is the covariant
divergence of the local surface stress. To translate these statements
into useful equations, we first need to understand what surface
stresses are.

The aim of this review is to introduce the concept of the
stress tensor geometrically, without entangling it to a specific
parametrization. However, it is possible to derive both stress- and
torque tensor within Monge gauge (Fournier, 2007). This requires
less mathematical preparation than to do it covariantly, but the
geometric connections are more difficult to spot. In any case, it is a
worthwhile exercise to translate back and forth between these two
formulations, which ultimately clarifies both.

4.1. The meaning of surface stresses

The surface tension of liquids or soap films is the prime exam-
ple of surface stresses. It is equal to the force per unit length acting
along any randomly chosen cut across such a surface or film. For
instance, imagine cutting the lower half of a soap bubble away.
What forces are required to keep the upper half unaffected? To
prevent the film from snapping back, we need to pull it with a force
� per unit length along the open edge that is constant, tangential
to the surface, and perpendicular to the cut. Since in the present
situation the cut is along the equator of the soap bubble, a great
circle of radius R, the total force in the downward direction equals
2�R�. Also, the gas inside the soap bubble is under a slightly higher
pressure than the gas outside (since the tension in the soap film con-
tracts the bubble and thus compresses the gas inside). To keep the
situation in equilibrium, we also need to keep the gas from rushing
out, which requires a “piston” of area �R2 to push upwards against
the (excess) pressure P. In equilibrium, both forces balance, and
from �R2P = 2�R� we get the well-known Young–Laplace relation
for spherical surfaces,

P = 2�
R
. (79a)

It is easy to relax the condition of sphericity: imagine a sta-
ble tension-dominated surface with local curvature K and area
element dA. If we perform a parallel displacement of that area ele-
ment by a distance ız along the local normal, Eq. (73a) tells us
that the change in area element is ıdA = KızdA. This translation
also implies a change of the enclosed volume, which is evidently
given by ıV = ızdA. The necessary balance between the two work-
contributions, namely tension–area (�ıA) and pressure–volume
(PıV), implies the generalized Young–Laplace relation

P = �K. (79b)
The product of tension and curvature is given by the (usually) con-
stant pressure difference between the two sides of the surface, so
wherever the curvature becomes smaller, the tension increases.
This is for instance why burritos, if amateurishly rolled up while
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pplying too much pressure, tend to rip along the weakly curved
ides and not at the more strongly curved ends.

This type of reasoning shows how convenient it can be to use
urface stress arguments. Unfortunately, the surface tension is not
articularly well suited to serve as a guiding example, because it has
o many special properties: it is tangential, isotropic, and indepen-
ent of the surface geometry. General surface stresses, including
hose of membranes, are more complicated, hence the question
with what force per unit length do I have to pull along an open
dge to prevent it from snapping back?” will involve a more com-
lex answer. Moreover, this answer will not just involve forces: for
urfaces more complicated than tension-dominated films surface
orques are also important.

.2. A straightforward functional variation

To find the “shape equation” resulting from a minimization of
he Helfrich energy functional (56), as well as the associated surface
tresses and torques, let us take a step back and contemplate what
ught to be calculated. Minimizing the geometric surface functional
equires a functional variation, or setting the first Fréchet derivative
f the functional to zero (Lovelock and Rund, 1989; Spivak, 1975b).
he thing being varied is the shape, which we characterized by a
arametrization X(u1, u2). A general functional variation can there-
ore be written as (Jenkins, 1977a,b; Ou-Yang and Helfrich, 1989;
apovilla et al., 2003; Spivak, 1975b)

→ X ′ = X + ıX with ıX = 	n+ 	aea, (80)

here we have decomposed the variation ıX into a normal and a
angential part, specified by three functions	 and	a. To first order,
he tangential variation describes nothing but a reparametrization,
nd so it contains no interesting physical information (Capovilla
t al., 2003).24 We can thus restrict to normal variations. Observe
hat this is a generalization of the concept of parallel surfaces, for
hich 	(u1, u2) = z0 = const .

What renders a “brute-force” functional variation relatively
edious is the fact that the energy is constructed from geomet-
ic scalars, such as K, which depend in a very intricate way on
he original parametrization X(u1, u2). Varying X first tells us
ow the tangent vectors vary, from there we find how the metric
nd the normal vector vary, from there how the curvature tensor
aries. We then need to find the variation of the inverse metric,
nd the metric determinant, the trace of the curvature tensor, and
he Gaussian curvature (which we could either do intrinsically,
y varying the Riemann tensor, or extrinsically, by exploiting the
auss–Codazzi–Mainardi equations). For instance, the variation of

he tangent vectors is found to be

ıea = ı∇aX = ∇a(	n) = (∇a	)n+ 	∇an
= (∇a	)n+ 	Kba eb,

(81)

here in the last step we used the equation of Weingarten (37a).
he first order variation of the metric then follows as

ıgab = ı(ea · eb) = ıea · eb + ea · ıeb
= [(∇a	)n+ 	Kcaec] · eb + ea · [(∇b	)n+ 	Kc

b
ec] (82)
= 2	Kab.

orking through like this, one finds (in a series of increasingly more
edious calculations) the following first order normal variations

24 This is no longer true at second order. However, for a second variation around
he equilibrium solution the tangential part becomes a total divergence, i.e., it only
ontributes a boundary term (Capovilla et al., 2003).
s of Lipids 185 (2015) 11–45 27

(Jenkins, 1977a,b; Ou-Yang and Helfrich, 1987, 1989; Capovilla
et al., 2003; Spivak, 1975b):

ıea = (∇a	)n+ 	Kba eb, (83a)

ın = (∇a	)ea, (83b)

ıgab = 2	Kab, (83c)

ıgab = −2	Kab, (83d)

ıg = 2gK	, (83e)

ıKab = (−∇a∇b − KKab + KGgab)	, (83f)

ıK = (−
− K2 + 2KG)	, (83g)

ıKG = −KKG	. (83h)

The Laplacian occurring in Eq. (83g) is the covariant Laplacian from
Eq. (32). From these pieces we can now construct variations of geo-
metric surface functionals. Given an arbitrary Hamilton density H,
we find

ı

∫
dA H = ı

∫
d2u
√
gH

=
∫

d2u[(ı
√
g)H+√gıH]

=
∫

d2u
[

1
2
√
g
ıgH+√gıH

]

=
∫

d2u
√
g[HK	 + ıH]

=
∫

dA[HK	 + ıH].

(84)

Applying this to the Helfrich functional (56), we get

ıH = ı
∫

dA
{
� + 1

2
�(K − K0)2 + �KG

}

=
∫

dA
{[
� + 1

2
�(K − K0)2 + �KG

]
K	

+[�(K − K0)(−
− K2 + 2KG)]	 − �KKG	
}

=
∫

dA
{
�K − ��K + 1

2
�(K − K0)

× [(K − K0)K − 2K2 + 4KG]
}
	

(85)

where in the last step we integrated the term (K−K0)�	 twice by
parts and ignored the boundary terms.

Since we frequently deal with vesicles, one might want to keep
the volume which they enclose fixed during the functional varia-
tion. If one adds a Lagrange-multiplier term−PV to the free energy,
this means we also need to know the variation of the volume, but
to first order the answer is obviously given by

ıV =
∫

dA	. (86)

Hence, setting the functional derivative of H−PV to zero results in
the shape equation (Ou-Yang and Helfrich, 1987, 1989; Capovilla
et al., 2003)

�K − �
{
�K − 1

2
(K − K0)

[
(K − K0)K − 2K2 + 4KG

]}
= P. (87)

As written, this equation is fully covariant. When expressed in

terms of the original surface parametrization X(u1, u2), it is a fourth
order partial differential equation that is highly nonlinear and
thus extremely hard to solve analytically. Notice that in the limit
where the bending rigidity vanishes, � = 0, the equation reduces
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should now makes us really curious about the physical meaning of
this conserved quantity.
8 M. Deserno / Chemistry and P

o �K = P. We thereby recover the generalized Young–Laplace law
rom Eq. (79b) as a very special case. Its solutions are evidently
onstant mean curvature surfaces, and if there is not even a pres-
ure difference between the two sides, the equation simplifies
urther to K = 0, which is the equation for minimal surfaces. Know-
ng how much beautiful and nontrivial mathematics is hidden in
his innocuous equation K = 0 lets one maybe appreciate better how

uch more complicated the full shape equation (87) is.
Obviously, any constant mean curvature surface with K = K0 is

solution of Eq. (87), provided only that �K0 = P; in particular, for
0 = 0 (and thus P = 0) any minimal surface solves the shape equa-
ion. That does not mean, though, that in a given situation these
pecial solutions are the right ones, because the set of solutions of
q. (87) is much bigger than that of K = const .

Since the Gauss–Bonnet theorem (70) delegates the surface inte-
ral over the Gaussian curvature to topology and boundary, it is no
urprise that the term �KG leaves no trace in the shape equation. In
act, the variation of the “densitized” Gaussian curvature is given
y (Capovilla et al., 2003)
√
gKG = −

√
gGabK

ab	, (88)

here Gab = Rab− (1/2)Rgab is the Einstein tensor, which vanishes
dentically in two dimensions, as Eq. (43b) shows. Compare this
o the special case we encountered for parallel surfaces, where
A KG was invariant under constant (but arbitrarily large) varia-
ions 	 = z0. Here we see that constancy is not required if we are
illing to restrict to a first order variation.

In closing this section, it is worthwhile to point out that surfaces
ndowed with curvature functionals have also been investigated
y mathematicians, independently and in fact earlier than physi-
ists. In particular, in the mathematical literature the functional
1/4)

∫
dA K2 is connected with the mathematician Thomas Will-

ore. He proved in 1965 that it is bounded below by 4� and
onjectured the better lower bound 2�2 for surfaces of genus g > 0
Willmore, 1965). This conjecture was proved only very recently
Marques and Neves, 2012). The Willmore functional and its vari-
tion has a long and fruitful mathematical history, dating back
lmost 200 years (Thomsen, 1924; Blaschke, 1929; Willmore, 1965,
982; White, 1973; Pinkall and Sterling, 1987).

.3. A more elegant functional variation

The “brute force” functional variation leading to the shape equa-
ion (87) is not only cumbersome (the pain really being hidden in
he work leading to Eqs. (83a–h)); it also does not provide much
nsight into what the shape equation in fact says. Both clarity and
nderstanding are gained by reformulating the variation in a way
roposed by Guven (2004). The key idea is this: instead of working
hrough all the geometric relations individually while performing
he variations, one enforces them by additional Lagrange multiplier
unctions, resulting in the extended functional

H̃= H +
∫

dA
{

f a · (ea −∇aX)+ �a⊥(ea ·n)+ �n(n2 − 1)

+�ab(gab − ea · eb)+�ab(Kab − ea · ∇bn)
}
,

(89)

here H is any surface functional (e.g. the usual Helfrich energy
56)) and the extra terms define the geometry. In particular, the
agrange multiplier function f a enforces the definition of the tan-
ent vectors, �a⊥ enforces that the normal vector is perpendicular
n both tangent vectors and �n enforces its normalization, while
he two functions �ab and �ab take care of the definitions of the

rst and second fundamental form, respectively. In the new func-
ional all geometric quantities can be varied independently, which
reatly simplifies the math. For instance, if the functional H does
ot depend explicitly on the parametrization X (like the Helfrich
s of Lipids 185 (2015) 11–45

functional, which only depends implicitly on it through the geomet-
ric scalars), the only occurrence of X in the extended functional
H̃ is in the term that defines the tangent vectors. Performing the
variation, we find

ıX H̃ = −
∫

dA f a · ∇aıX

= −
∫

dA[∇a(f a · ıX)− (∇af a) · ıX]

= −
∮

ds laf
a · ıX +

∫
dA(∇af a) · ıX,

(90)

where for once we did not disregard the boundary term but turned
it into a line integral around the boundary over which we per-
formed the variation, using the two-dimensional analog of Gauss’
theorem—see Eq. (31).

In equilibrium, both the bulk and the boundary term of ıX H̃must
vanish. As far as the bulk term is concerned, this gives rise to the
condition

∇af a = 0. (91)

This equation makes the remarkable statement that for every equi-
librium surface there exists an object, f a, which is covariantly
conserved.25 Nothing in the shape equation (87) readily suggests
the existence of such a conservation law. Clearly, we should now
be very curious to find out what f a is! This is fairly easy to work
out, though, because the remaining four variations with respect to
ea, n, gab and Kab give us a closed expression for f a in terms of
the surface geometry. Through calculations much simpler than the
ones leading to Eqs. (83a–h), one finds (Guven, 2004; Müller, 2007)

f a = (Tab −HacKbc )eb − (∇bHab)n, (92)

where we have defined the functional derivatives of the Hamilto-
nian density with respect to the two fundamental forms as

Tab = − 2√
g

ı(
√
gH)

ıgab
= −Hgab − 2

ıH
ıgab

, (93a)

Hab = ıH
ıKab

. (93b)

In Eq. (93a) we also used the identity ∂g/∂gab = ggab for the deriva-
tive of the metric determinant. For the case H = Kn we now find

Tab[Kn] = −Kngab + 2nKn−1Kab, (94a)

Hab[Kn] = nKn−1gab, (94b)

and for the Hamiltonian density H = KG we get

Tab[KG] = KGg
ab, (95a)

Hab[KG] = Kgab − Kab. (95b)

Combining these results, we find that the conserved quantity f a

for the case of the Helfrich energy densityH = � + (�/2)(K − K0)2 +
�KG is given by

f a =
{
�(K − K0)

[
Kab − 1

2
(K − K0)gab

]
− �gab

}
eb − �(∇aK)n.

(96)

If we now calculate the divergence ∇a f a, we discover that it coin-
cides with the left hand side of Eq. (87); in other words, the shape
equation is equivalent to the fact that f a is covariantly conserved. This
25 If we include the pressure constraint −PV in the functional, the right hand side
turns into P n, stating that P acts as a constant normal source term.
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a charge density to source an electric field, and here we need a force
density to source the stress.

The fact that in the absence of an explicit force density the
stress tensor is covariantly conserved is the key reason why it is so

26 Alas, up to a minus sign again: The convention followed for instance in Landau
and Lifshitz (1999) has the stress tensor describe the force of the exterior region R
onto the inner region R rather than the force of that region onto its surrounding.
This for instance implies that an isotropic pressure has a stress tensor proportional to
−P (see [Landau and Lifshitz, 1999, Eq. (2.6)]), while in the convention to be adopted
here an isotropic surface tension has the surface stress tensor proportional to−� (see
ig. 4. A patch R on a membrane with boundary ∂R. Along its contour it has an
utward pointing unit vector l, tangent to the surface. The outward pointing unit
ector of the complement R =M\R has an outward pointing unit normal l = −l.

.4. Interpretation of f a as the stress tensor

The object f a has been introduced by Capovilla and Guven in
series of papers (Capovilla and Guven, 2002a,b, 2004; Capovilla

t al., 2002) and identified as the surface stress tensor. They first
ncounter it as a consequence of Noether’s theorem: every contin-
ous symmetry of a variational problem implies a conservation law
or the solution. Here, translational symmetry implies a conserved
urrent for equilibrium shapes, and that current is f a. Its relation
o translational symmetry indeed reveals its connection to stresses
nd forces.

Let us now consider a mechanical argument that sheds light
nto the nature of f a (Müller et al., 2005a; Müller, 2007). Imagine
membrane M, and on it a compact region R. We will refer to the
embrane without the region R as the complement of R, or R =
\R—see Fig. 4. Assume now that the membrane outside of R is in

quilibrium, such that ∇a f a = 0 holds on R. We will make no such
ssumption aboutR, but we postulate that the whole membraneM
s stationary (if need be, by the application of extra forces). Across
he boundary ∂R we have a tug of war between the surface stresses
f the two patchesR andR, but at any given point along the contour
hey must precisely cancel. If we translate the boundary ∂R by an
nfinitesimal amount ıa, the energy of the complement R must
hange, but since the shape equation holds on R, this change only
esults from the boundary term of Eq. (90), and we get

H̃[R] = −ıa ·
∮
∂R

ds laf
a = ıa ·Fext[R], (97)

here ds is the line element on ∂R and la is the normal vector on
R (tangential to the membrane) which points out of R (and thus

nto R). Since the change in energy of R is given by a translation ıa
otted into some other expression, this other expression must be
he external force acting onR. To clarify the sign: Picture a situation
n which the translation proceeds in the opposite direction as the
xternal force, ıa ·Fext[R]< 0. Clearly, the systemRhas done work
n its surrounding. Since the situation was assumed to be globally
n equilibrium, the only source of energy to perform that work could
ave come from the system, which therefore must have lowered its
nergy, and so we also have ıH̃[R]< 0.

Eq. (97) shows that the line integral over laf
a is equal to the

egative of the external force on R (the patch to which la is the out-
ard pointing normal vector). In other words, it is equal to the force
hich R exerts on its surrounding. This is the same construction by

hich in classical elasticity the stress tensor is defined (Landau and

ifshitz, 1999): The force per unit area across a two-dimensional
ut through a material is given by na�ab, where �ab is the three-
imensional stress tensor and na is the outward pointing normal
s of Lipids 185 (2015) 11–45 29

vector of the area element.26 In three dimensional elasticity theory
the stress tensor has two indices (it is essentially a 3×3 matrix),
but our stress tensor seems to have only one index—what is going
on? It turns out that our stress tensor also has two indices, but
they run over different ranges: The first index a labels the two sur-
face coordinates u1 and u2, and the second index should label the
three space coordinates x, y, and z, so we could write it as fai, where
a∈ {1, 2} and i∈ {1, 2, 3}—the surface stress tensor is a 2×3 matrix!
Evidently, this is prone to much confusion, and so it is more conve-
nient to combine the three space coordinates into one (bold-faced
space-)vector.

If we know the force with which R acts on its surrounding, then
by Newton’s third law the force by which R acts back on R must
simply be the negative of that. We can account for that extra minus
sign by also flipping the normal vector and use la = −l̄a, which
is the outward pointing unit normal vector to ∂R. Hence, we get
the important result for the force by which a patch R acts on its
surrounding:

F[R] =
∮
∂R

ds laf
a. (98)

The seemingly labyrinthine reasoning with a detour over R served
to show that in Eq. (98) we do not have to assume that the patchR is
in equilibrium. In fact, all we really need is that the shape equation
holds in a small stripe around the contour ∂R.

To add some intuition to this important physical interpretation
of the stress tensor, a comparison with an analogous but much
more familiar situation from electrostatics might be useful. Pois-
son’s equation states that the divergence of the electric field E( r)
equals the charge density �( r), times some constant that depends
on the system of units; in SI units we get ∇ · E =�/ε0. Away from
charges the electric field is thus divergence free—but of course not
necessarily zero. Imagine a region of space R that contains a total
charge Q inside it. By integrating Poisson’s equation over that region
and using Gauss’ law, we find∫

R
dV∇ ·E = 1

ε0

∫
R

dV�∮
∂R

dAn ·E = 1
ε0
Q,

(99)

where n is the outward pointing unit vector of the surface ∂R. In
other words, by calculating the flux of the electric field through a
closed surface, we can determine the total charge inside. The stress
tensor analogy is now obvious: By integrating the flux of the stress
through a closed contour ∂R we can determine the total force with
which R acts on the membrane surrounding it. This is precisely
what Eq. (98) states. Of course, this integral can only be nonzero
if ∇a f a = 0 does not hold everywhere, just like in the electrostatic
analogy∇ · E = 0 cannot hold everywhere. In electrostatics we need
Eq. (112) below). The situation is analogous to the question what sign “work” has
in thermodynamics: is it the work done by the system on its surroundings or of the
surroundings onto the system? There seems little hope that the literature will con-
verge on a single convention, and so one simply has to make sure one understands
the convention followed by some author before taking any sign serious.
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mmensely useful. If this statement is still not obvious, let us illus-
rate it with one final analogy, this time from classical mechanics.
magine you fire a bullet into a freely suspended block of wood so
hat it gets stuck in it. Question: with what speed does the bullet-
lus-woodblock system move afterwards? This could potentially
e a completely unanswerable problem, given that we have no idea
ow the bullet deformed upon impact, what grain structure the
oodblock had, how much kinetic energy was turned into heat,

nd that we would never be able to calculate these things any-
ays. And yet, we give problems of this sort to high school seniors,

ince the answer, of course, follows easily by considering momen-
um conservation. The moral is this: in the absence of additional
xternal forces the momentum of a closed system is a first integral
f the equations of motion: ṗ = F = 0 implies that p is conserved,
nd hence we do not need to solve the equations of motion in order to
nswer this particular question. Likewise, in the absence of addi-
ional force densities the stress tensor f a is covariantly conserved,
nd hence there exist numerous questions which we can readily
nswer without ever having to solve the complicated nonlinear
hape equations.

.5. Stress tensor in the Darboux frame

The stress tensor, as defined in Eqs. (92) or (96) is fully covariant,
ut it is expressed in the local coordinate system { e1, e2, n},
nd the two tangent vectors are a last remnant of our coordinate
hoice. Ultimately, the goal is to express it in geometrically intuitive
uantities that do not refer to coordinates at all. Since the stress
ensor answers questions about force densities along contours C, it
ould be much more natural to use the tangent vector t to such a

ontour as well as the (outward pointing) normal vector l = t× n as
replacement for the two tangent vectors { e1, e2}. In other words,
e want to use the coordinate system { l, t, n}on the surface, which

s called the “Darboux frame” of the curve C (do Carmo, 1976). It
iffers from the usual Frenet frame of a curve by a rotation around
, because the two normal vectors to the curve are constructed from
he characteristic surface vectors n and l rather than the normal
ector of the curve itself and its associated binormal vector.

To connect t and l to the tangent vectors e1 and e2 from the
arametrization, let us expand them as follows:

= taea and l = laea. (100)

ince we use the convention that { l, t, n} is a right-handed coor-
inate system, this implies that the direction by which a patch is

ooped around is right-handed with respect to the normal vector.27

ecause l and t are normalized and orthogonal, their components
atisfy completeness on the surface:

b
a = lalb + tatb, (101)

hich also implies

a = tat + lal. (102)

We can now define the components of the curvature tensor
ithin this coordinate system:

⊥ = Kablalb, K|| = Kabtatb, K⊥|| = Kablatb. (103)

his means that K|| is the normal curvature of the surface if it is
ut along t, or along the contour to which t is the tangent vector.

⊥ is the normal curvature tangential to l or perpendicular to t,
nd K⊥|| is the off-diagonal component, which is nonzero if { l, t}
o not coincide with the principal directions. The curvature K⊥|| is

27 This unfortunately happens to differ from the convention followed in the math-
matical literature, which defines l pointing in the opposite direction, such that
ow { t, l, n} is right-handed.
s of Lipids 185 (2015) 11–45

sometimes also referred to as the “geodesic torsion,” because it is
equal to the torsion of a geodesic that locally has the tangent vector
t (Kreyszig, 1991; Spivak, 1975a; Willmore, 2012).

In the same way we can also define directional derivatives along
t and l:

∇⊥ = la∇a, ∇|| = ta∇a. (104)

Let us look at an important example in order to practice these
equations. Consider a curve C on the surface and its Darboux frame
{ l, t, n}. As we move along C, the normal vector n changes as
follows:

∇||n = ta∇an = taKba eb = taKba (tbt + lbl) = K||t + K⊥||l. (105)

For the change of the tangent vector t we find

∇||t = ta∇a(tbeb) = tatb∇aeb + taeb∇atb

= −tatbKabn+ (tbt + lbl)∇||tb ∗= − K||n+ (lb∇||tb)l
= −K||n− kgl.

(106)

At “∗” we used the fact that differentiating tbtb = 1 implies
tb∇||tb = 0. The abbreviation kg =− lb∇||tb introduced in the last line
is the geodesic curvature of the curve. It is the curvature of a surface
curve projected back onto the surface, i.e., that part of the curve’s
curvature that is not due to the fact that the surface itself might be
curved. Since t · t = 1, differentiation shows that t · ∇|| t = 0, and so
∇|| t cannot have a component along t. Projecting into the plane
therefore means projecting onto l, and if we do this using Eq. (106),
we obtain a coordinate free expression for the geodesic curvature:

kg = −l · ∇||t. (107)

This gives a clean geometric definition for the quantity that enters
the Gauss–Bonnet theorem (70). The sign convention is such that
a planar circle of radius R with outward pointing normal n has a
positive geodesic curvature 1/R. As an example, a great circle on a
sphere of radius R has a curvature 1/R but no geodesic curvature,
since∇|| t points towards the center of the sphere but l is tangential
to it, so that kg =− l · ∇ || t = 0. Curves with a vanishing geodesic cur-
vature are called geodesics. They generalize straight lines to curved
geometries.

Finally, since l · n = 0, we know that l · ∇ || n =− n · ∇ || l, and
since l · t = 0, we know that l · ∇ || t =− t · ∇ || l. This helps us to
get the projections of ∇|| l onto n and t from Eqs. (105) and (106),
respectively:

∇||l = −K⊥||n+ kgt. (108)

Notice that we can combine Eqs. (105), (106) and (108) in the fol-
lowing elegant way (Spivak, 1975a):

∇||

⎛
⎝ l

t

n

⎞
⎠ =

⎛
⎜⎝

0 kg −�g

−kg 0 −kn

�g kn 0

⎞
⎟⎠
⎛
⎝ l

t

n

⎞
⎠ , (109)

where we used the more common symbols kn = K|| for the normal
curvature along the curve and �g = K⊥|| for the geodesic torsion.
Eq. (109) is a compact notation for the Frenet–Serret equations
of the Darboux-frame, i.e., the answer to the question how the
Darboux-frame changes as one moves along the curve C.28 They
nicely illustrate how to work with the decompositions defined

in Eqs. (100)–(104), but they do not feature prominently if one
only considers the surface itself. However, once one cares about
physical curves on surfaces, such as semiflexible polymers, these

28 Again, due to different sign conventions, these equations look differently in the
mathematical literature.
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Fig. 5. Stress tensor in the Darboux frame: We are interested in the stress across a
curve C, which separates a membrane region 1 from a membrane region 2. The curve
has a local tangent vector t, normal vector l tangent to the surface, and surface
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ormal vector n. Let l be oriented such that it is the outward pointing normal to
he region 1. The stress through the curve, f ⊥ = la f a , answers the question: What
orce per length does patch 1 exert onto patch 2 through the curve C?

quations become extremely important (Nickerson and Manning,
988; Guven and Vázquez Montejo, 2012).

Using the Darboux frame as our reference, we can rewrite the
orce per unit length la f a for the Helfrich stress tensor from Eq. (96)
n the following way:29

f ⊥ := laf a = �(K − K0)
[
laKab(lblc + tbtc)ec

− 1
2

(K − K0)lagab(lbl
c + tbtc)ec

]
−�lagab(lblc + tbtc)ec − �(la∇aK)n

= �(K − K0)
[
K⊥l + K⊥||t − 1

2
(K − K0)l

]
−�l − �(∇⊥K)n

=
{

1
2
�[K2
⊥ − (K|| − K0)2]− �

}
l

+�(K − K0)K⊥||t − �(∇⊥K) n,

(110)

here in the last step we used the fact that K = K⊥ + K||. In the impor-
ant special case K0 = 0 this simplifies to

⊥ =
[

1
2
�(K2
⊥ − K2

|| )− �
]

l + �KK⊥||t − �(∇⊥K) n. (111)

Fig. 5 illustrates the geometry of our definition of the force den-
ity in the Darboux frame.

We now have gained a much better position from which to judge
he physical meaning of the stress tensor. Begin by considering the
imple special case in which � = 0, so the surface Hamiltonian is
eally only characterized by a surface tension �. In that case the

tress tensor is f a =−� ea, and the force per unit length is

⊥ = −�l (112)

29 Guven and Vázquez Montejo (2013) define f ⊥ =− la f a , presumably to get closer
o the conventional sign definition of the stress tensor. Here I rather stay with the
onvention that the subscript “⊥” indicates a projection onto la , without any minus
igns that may or may not happen, and have the same convention for the sign of f a

nd f ⊥ .
s of Lipids 185 (2015) 11–45 31

in the Darboux frame. This force is seen to be independent of the
surface geometry, isotropic, tangential, and normal to the cut. The
negative sign tells us that for positive surface tension the force pulls:
A patch of membrane with outward pointing unit normal l pulls
inward. But as Eqs. (110) or (111) show, the transmitted forces are
more complicated in the presence of curvature elasticity:

1. The force depends on the surface geometry through the local
curvature.

2. The occurrence of the curvature tensor Kab (instead of the scalar
K) also shows that the force is generally not isotropic (in which
case it could only be proportional to gab).

3. If the curvature K is not constant, the last term−�(∇ ⊥K) n shows
that the resulting force is no longer tangential to the surface.

4. If the cut is not along a principal direction, the off-diagonal com-
ponent K⊥|| does not vanish and a force component tangential to
the cutting direction emerges.30

As far as the force component normal to the cut (along l) is
concerned, we can observe an interesting pattern: The curvature
K⊥ perpendicular the cut leads to a repulsive force of magnitude
(1/2)�K2

⊥, while the curvature K|| parallel to the cut increases the
tensile force of the surface tension term by an additional amount
(1/2)�(K|| −K0)2. It is quite curious that only the latter term involves
the spontaneous curvature K0.

The slightly convoluted discussion in Section 4.4 shows that
understanding the correct sign of the force from first principles can
easily turn into a nerve-wracking exercise one does not wish to go
through each and every time one needs to know the direction of the
force. In the experience of the author, a reliable shortcut is to cali-
brate one’s expectation of the sign against the surface tension term,
for which intuition will give the right direction. For instance, since
� and (1/2)�(K|| −K0)2 both occur with the same sign in Eq. (110),
and since we know that a positive surface tension leads to a tensile
force, we know that the parallel curvature term does so, too.

Finally, observe that, again, the Gaussian term has dropped out
of the stress tensor: f a does not involve �. We have previously seen
that the shape equation is independent of the Gaussian modulus;
now we find that even surface stresses do not involve the Gaussian
curvature term in the Hamiltonian.

4.6. Simple examples for the stress tensor

It is instructive to look at a few special cases for the stress tensor,
and below we will investigate the simple but nevertheless impor-
tant special cases of planes, spheres, and cylinders.

4.6.1. Plane
If the membrane is flat, all curvatures (and of course their gra-

dients) vanish, and so the stress tensor (110) greatly simplifies:

f ⊥ = −
[
� + 1

2
�K2

0

]
l. (113)

The first contribution,−� l, is nothing but the surface tension term.
The second contribution, −(1/2)�K2l, is the spontaneous tension
0
recently described by Lipowsky (2013, 2014). Its sign is such that
it always pulls, exactly like an ordinary positive surface tension.31

30 Given that the off-diagonal component of the curvature tensor is involved, it is
tempting to interpret this force as a shear, but this view is misleading: The surface
is fluid and cannot support shear.

31 Notice, though, that the sign of � does not necessarily have to be positive: Mem-
branes under compression can have a negative tension, as we will see in Section 6.3.
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oth terms together result in what might be called the isotropic
ension˙ with which a flat membrane pulls:

:= � + 1
2
�K2

0 = �
[

1+ 1
2

(K0�)2
]
, (114)

here � is the characteristic length defined in Eq. (71). As we have
een, this length scale can be many tens of nanometers for mem-
ranes at low cellular tensions, and so it does not take much of a
pontaneous curvature K0 before the spontaneous tension begins
o contribute significantly to the isotropic tension.

The view that, as far as stresses are concerned, a spontaneous
urvature K0 simply leads to a spontaneous tension (1/2)�K2

0 that
hifts the value of the bare surface tension � would be incorrect,
hough. Yes, for flat membranes the term (1/2)�K2

0 indeed con-
ributes additively, but for curved membranes the spontaneous
urvature enters the overall membrane stress in a more com-
licated fashion: it only affects the K|| part in Eq. (110) and will
herefore generally not act isotropically, unlike the usual surface
ension. Of course, even in the curved case a term (1/2)�K2

0 exists
hat shifts �, and so the sum of both terms, ˙, can be viewed as a
ension independent of the shape—which is why the term “isotropic
ension” seems fitting: a tension that acts irrespective of the local
tate of curvature. However, expanding the square shows that there
enerally is an additional geometry dependent stress �K0K|| l. The
oral is: the spontaneous curvature creates stresses beyond the

pontaneous tension. Its effects are generally not isotropic, even
hough the scalar K0 has no direction built into it, because it can
ntangle the local geometry into the stresses, and the local geom-
try is generally anisotropic.

.6.2. Sphere
A sphere’s curvature is not just constant but also isotropic:

⊥ = K||, K⊥|| = 0 and∇⊥K = 0. For K0 = 0 we get the very simple result
⊥ =−� l, showing that the stresses in a spherically curved Helfrich
embrane do not depend on curvature terms at all. Cutting a spher-

cal vesicle with K0 = 0 into half at the equator means that the force
ensity required to hold the rim is the same as that for a soap film,

.e, the discussion seems identical to that leading to Eq. (79a)—but
his is not quite true, because at the open edge of a vesicle it will
ot be enough to only supply a force. We will also need to supply a
orque, as Section 5 will show.

The result f ⊥ =−� l for spherical vesicles is counterintuitive
lso for a different reason: it does not involve the vesicle’s size. One
ight have expected more highly curved vesicles to experience

igger curvature stresses, but this is not so. The curvature stresses
anish (at least on the quadratic Helfrich level). Of course, the bend-
ng energy per lipid, ε�, increases for smaller vesicles: since for a
phere the bending energy is 8�� + 4��, we find approximately

� �
a�

2R2
(2� + �). (115)

ith 2� + � ≈ 20kBT , a�≈0.7 nm2 and even a very small vesicle
adius of R = 5 nm, we get ε�≈0.3kBT, which is almost two orders
f magnitude smaller than the aggregation free energy per lipid.
ence, there is little reason to suspect that internal curvature ener-
ies or stresses destabilize small vesicles: the former are small, the
atter are zero.

If the spontaneous curvature K0 does not vanish, a bending con-
ribution to the surface stress remains:

⊥ =
{

1
2
�K0

(
2
R
− K0

)
− �

}
l =

{
�K0

R
−˙

}
l. (116)

he bending term vanishes if K0 = 2/R, i.e., when the spontaneous

urvature equals the vesicle’s curvature. If the vesicle is bigger than
/K0, the bending stresses are contractile (same sign as the�-term!)
nd hence try to reduce the radius of the vesicle. If the vesicle radius
s smaller than 2/K0, the bending stresses instead try to swell the
s of Lipids 185 (2015) 11–45

vesicle. In either case, there are no normal stresses, even though
there is a normal force density, which is the divergence of the stress
tensor and which is equal to the excess pressure in the vesicle’s
interior.

Notice that for closed vesicles we will also have a Young–Laplace
pressure to deal with, so the complete force balance involves more
than surface stresses. If we cut a spherical vesicle at the equator,
we get a rim-contribution from the force density in Eq. (116), but
this will be balanced by a pressure term that is equal to the excess
pressure P of the interior vesicle times the cross-sectional area �R2

of that cut. Hence, a generalization of the argument that led to
Eq. (79a) now yields

2�R
[

1
2
�K0

(
2
R
− K0

)
− �

]
= −�R2P, (117)

or slightly rewritten

2˙
R
= P + 2�K0

R2
. (118)

It is easy to see that this is equivalent to the shape equation (87)
specialized to a sphere. It is a quadratic equation in R which only
has real solutions if˙2 > 2P�K0, namely

R1,2 =
1
P

[
˙ ±

√
˙2 − 2P�K0

]
. (119)

4.6.3. Cylinder
Imagine pulling a cylindrical tether of radius R and length L out of

a flat membrane which is under tension � and has a spontaneous
curvature K0. What is the force with which we need to hold the
tether?

The two natural directions in which to decompose the stress
tensor are along the axis and along the circumference. For symme-
try reasons these coincide with the principal directions, and hence
no off-diagonal (tangential) force emerges at the cut. Since further-
more the curvature is constant (except maybe at the tip of the tether
and where it connects to the flat membrane), the normal stresses
vanish, too. Hence for the directions along and around the cylinder,
we find the following tangential force per unit length:

along : l · f ⊥ = −
1
2
�
(

1
R
− K0

)2
− �, (120a)

around : l · f ⊥ =
1
2
�
(

1
R2
− K2

0

)
− �. (120b)

We cannot control the radius of the cylinder, it instead freely adjusts
such that the circumferential stress (120b) vanishes (Fournier,
2007), leading to (Bukman et al., 1996; Hochmuth et al., 1996;
Waugh et al., 1992)

R =
√

�/2

� + �K2
0/2

=
√

�

2˙
. (121)

The axial force F˙ along the tether pulled from a flat membrane
subject to the isotropic tension˙ now arises from multiplying the
stress from Eq. (120a) with the circumference of the tether:

F˙ = 2�R

[
1
2
�
(

1
R
− K0

)2
+ �

]

= 2�
[
�

2R
− �K0 +˙R

]
= 2�

[√
2�˙ − �K0

]
= 2��

[
1
R
− K0

]
.

(122)
The spontaneous curvature K0 affects tether radius R and tether
force F˙ in different ways: Any non-zero K0 decreases R; but the
additional shift in F˙ by−2��K0 reduces the force if K0 prefers the
curvature of the tether, while it increases the force otherwise. The
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orce vanishes if 1/R = K0, or equivalently � = 0. Hence, for � < 0 (or
f the isotropic tension ˙ is smaller than the spontaneous tension
1
2�K

2
0 ) a pre-existing tube will increase its length spontaneously.

We could of course also derive these results using energy argu-
ents. The energy of a tether of radius R and length L pulled from
flat parent membrane is given by

= 2�RL

[
� + 1

2
�
(

1
R
− K0

)2
]

(123a)

= 2�RL

[
˙ + 1

2
�
(

1
R
− K0

)2
− 1

2
�K2

0

]
. (123b)

he condition 0 = (∂E/∂R)˙ leads to the radius from Eq. (121), and
˙ = (∂E/∂L)˙ leads to the force from Eq. (122).

Algebraically, the two expressions (123a) and (123b) are triv-
ally identical; but the interpretation of the terms is subtly different.
n Eq. (123a) the first term accounts for the energy of transferring

embrane area from the parent membrane into the tether, while
he second term is the bending energy of the tether. In Eq. (123b) the
rst term describes the work required to pull membrane against the

sotropic tension˙ of the parent membrane, while the second and
hird term together account for the excess bending energy which
pulled tether possesses compared to the flat parent membrane.
otice how the subtle difference between the price to pay for extra
rea vs. the price to pull against an isotropic tension has implica-
ions on which form the correct bending term should take (to avoid
ouble-counting). This is one more reminder that the seemingly

nnocuous term “tension” should be used with great care.
If the tubular membrane is not connected to a flat parent mem-

rane but a curved one (e.g. a vesicle), then the stress balance
quations are modified by an additional (Young–Laplace) pressure
cross the membrane, which can be accounted for by the same
easoning that led to Eq. (79a). For vesicles much bigger than the
ttached tubes the pressure contribution is a small correction, but
t for instance affects stability questions. The numerous ramifica-
ions of this situation have recently been discussed by Lipowsky
2013, 2014). Fluctuation corrections are addressed in Ou-Yang
nd Helfrich (1989), Komura and Lipowsky (1992), Bukman et al.
1996), Fournier and Galatola (2007) and Monnier et al. (2010).

In the situation discussed so far the cylindrical membrane tube
as under a fixed tension, which is the experimentally relevant

ase. However, in computer simulations it is often convenient to
imulate cylindrical membranes in the ensemble of constant area,
or instance because the tensile force permits access to the bending
igidity � (Harmandaris and Deserno, 2006; Arkhipov et al., 2008;
hiba and Noguchi, 2011). In this case the membrane radius fol-
ows from the tube’s area and length via R = A/(2�L) and not from
he vanishing of the circumferential stress. It is thus worthwhile to
sk whether these tethers are somehow different in terms of their
nternal stresses.

The area could be fixed with a Lagrange multiplier term �A, but
t is easier to enforce this constraint explicitly. The tether force is
hen seen to be given by

FA =
(
∂E
∂L

)
A

= ∂
∂L

∣∣∣∣
A

[
2�RL × 1

2
�
(

1
R
− K0

)2
]

∂
[

1
(

2�L
)2
]

=
∂L

A×
2
�

A
− K0

= 2��
(

1
R
− K0

)
,

(124)
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just as in the constant tension case derived in Eq. (122). This answer
must equal the result derived from a stress analysis, from which we
can determine the unknown bare tension �:

FA
!=2�R

[
1
2
�
(

1
R
− K0

)2
+ �

]
. (125)

Inserting Eq. (124) for FA, we see that this condition is equivalent
to Eq. (121), and therefore the value of � is the same as in the
constant-tension ensemble. This in particular implies that the cir-
cumferential stress again vanishes, even though the radius does
not adjust to do this (instead, the value of � adjusts). Constant-
area and constant-tension tethers are equivalent (at least in their
ground state properties).

5. The torque tensor of lipid membranes

In the previous section we have seen how surfaces transmit
stresses. If the surface energy is characterized by anything more
complicated than an ordinary surface tension, these stresses give
rise to more than a constant isotropic tangential force per unit
length. But we know from experience that objects that exhibit some
rigidity are able to transmit even more than stresses: I can hold a
beam horizontally by clamping it at one end, something that does
not work with a rope. Beams are able to transmit torques, and the
same is true for membranes subject to curvature elasticity. In this
brief section we will develop the formalism within which this can
be simply described. After what we have learned about the stress
tensor, the arguments will be very familiar.

5.1. Boundary terms in the functional variation

In Section 4.4 we found the interpretation of the surface stress
tensor by looking at the boundary term of the variation of H̃ from
Eq. (89). We expected a conserved quantity related to a continu-
ous symmetry—this is how translation symmetry gave rise to the
stress tensor. However, there is another obvious continuous sym-
metry, namely rotations. These would change not only the position
of points of the membrane, but also all directions, especially those
of the normal vector.

In Eq. (90) we only found one boundary term, namely−la f a · ı X ,
because this is the only one which is nonzero for constant trans-
lations. However, it is obvious that in general this is not the
only one that could arise upon varying H̃: for instance, the func-
tional contains the term �ab(Kab− ea · ∇ b n), which produces a
boundary term when varying n and integrating by parts, namely
−lb�abea · ın = lbHabea · ın.

Consider again the equilibrated patch R which we translated in
Section 4.4. If we instead perform a constant rotation ıX = ıˇ× X ,
which implies a concomitant rotation of the normal vector
ı n = ıˇ× n, the boundary change in H̃[R] now has a second term
from the n derivative just mentioned, and so we get the slightly
more complicated boundary contribution

ıH̃[R] = −ıˇ ×
∮
∂R

ds la
{

X × f a +Habeb × n
}
= ıˇ ×Mext[R].

(126)

The integral can now be interpreted as a torque, and the integrand
is therefore the torque tensor (Capovilla and Guven, 2002a, 2004)

ma = X × f a +Habeb × n. (127)

The first term is the obvious external torque: If there is a force

density along the edge of the patch R, then the position crossed
into it results in a torque density along the edge. The more inter-
esting term is the second one, the intrinsic torque, which arises
because the surface itself resists internal rotations around any axis
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Fig. 6. Geometry along an axial cut of a cylindrical membrane. The “rod” glued to
the membrane helps to visualize the rotation necessary to curl the membrane into
a given curvature, and in what direction the membrane therefore tries to rotate it
4 M. Deserno / Chemistry and P

erpendicular to the surface normal. Since in the special case of the
elfrich Hamiltonian we already know what Hab is, we quickly get

Capovilla and Guven, 2002a, 2004)

ma = X × f a +ma (128a)

ith ma =
[
�(K − K0)gab + �(Kgab − Kab)

]
(eb × n). (128b)

ote that the intrinsic torque is tangential to the surface, meaning
hat the rotation axis of the couple it corresponds to lies in the
lane.

Using again completeness (101), the identities from Section 2.6,
he orthonormality of the triad { l, t, n}, and Eq. (105), the pro-
ection of the intrinsic torque on the outward pointing normal l is
Müller, 2007)

⊥ = lama = −�(K − K0)t − �(K||t + K⊥||l) (129a)

= −�(K − K0)∇||X − �∇||n. (129b)

he term proportional to the bending rigidity � describes
couple around the direction t of the contour. And

he reformulation of the �-term in Eq. (129b) reveals the
act that for closed integrals this term must vanish, since
ds∇ ||(anything) =

∮
ds(d/ds)(anything) = 0. Whenever K is

onstant (if we have a so-called “constant mean curvature sur-
ace”), the same argument shows that the first term vanishes on
losed contours, too. This is certainly always true for the part
roportional to K0.

.2. Simple examples for the torque tensor

The nontrivial part in the torque tensor is the intrinsic torque,
hich is proportional to Hab = ıH/Kab. Hence, if the Hamiltonian
ensity of the surface does not depend on its curvature, there is no

ntrinsic torque. This is evidently true for pure surface tensions:
pplying a local force couple to an object that feels no bending
esistance will not result in the transmission of torques.

For flat membranes all curvatures vanish, and so the intrinsic
orque is m⊥ = �K0t. This expression states that a flat membrane
ith a spontaneous curvature is under torsional stress: it every-
here wants to “curl down” such that the resulting curvature K
ore closely corresponds to the spontaneous curvature K0.
To get an intuitive feeling about the sign of the intrinsic torque,

t is useful to consider a cylindrically curved membrane, such as
he one in Fig. 6, for simplicity first in the case K0 = 0. What is the
ntrinsic torque at its straight edge? From Eq. (129a) we immedi-
tely find m⊥ = −�Kt. The proportionality to t implies that the
ntrinsic torque has t as its axis, and since torques have something
o do with local rotations, the following image might be useful:
magine glueing a rod to the edge of the membrane. If we turn the
od, we would curl the membrane in one direction or the other, thus
urving it locally. In equilibrium, the membrane would react by a
orque that fights against our attempts to rotate that rod. In Fig. 6
e have to rotate the rod clockwise to curve the membrane the way

t is curved; this means that the back-torque exerted by the mem-
rane acts counter-clockwise, as the curled arrow illustrates. Using
he right hand rule, we see that this rotation direction corresponds
o the (axial) vector− t, just as Eq. (129a) states. Alternatively, con-
ider the formula r× F for a torque, and rewrite t = n× l. If we
ow identify n↔ r as a lever arm and exert a force in the direction
f l↔ F , we induce the same rotation around the t-axis. Notice
hat we need K > 0 for this argument, but this is true in the figure,
ince the membrane bends away from the local normal vector. As

sual for torques (and anything else that involves cross-products),
he handedness of the coordinate frame matters.

If the edge of the membrane in Fig. 6 were free, nothing there
ould counterbalance an intrinsic torque, which therefore has to
back to counteract the imposition of external intrinsic torque—namely in the one
indicated by the curved arrow.

vanish. Indeed, t ·m⊥ = 0, or �(K − K0)+ �K|| = 0, is one of the
boundary conditions of an open edge (Capovilla et al., 2002; Tu and
Ou-Yang, 2003). In the case of Fig. 6 this would imply K = 0, and since
here K|| = 0 anyways, we deduce K⊥ = 0 at a straight edge, showing
that the membrane is planar there. If the curve is not an actual open
edge but merely a contour C drawn on a membrane to separate two
regions, just as in Fig. 5, the intrinsic torque does not vanish on C;
it instead has the magnitude �K and the direction discussed above.
As we have seen in Section 4.6.3, the circumferential stress always
vanishes for cylindrical membrane tethers, but the axial intrinsic
torque generally does not.

For spherical membranes we find the intrinsic torque per unit
length

m⊥ = −�
(

2
R
− K0

)
t − �1

R
t = −

[
(2� + �)

1
R
− �K0

]
t. (130)

The second term is again the torque due to the spontaneous cur-
vature (which in fact never depends on the geometry). The first
term counteracts the spontaneous term, and it describes the torque
by which a curved membrane resists bending by promoting “un-
curling.” Notice that it has a definite sign, because 2� + � > 0 by
virtue of the stability condition (69), but the torque balance is
indeed curious: Since � < 0, its contribution alone would make the
membrane curl more into the direction it is already curved, but the
�-term always overwhelms this trend.

At this point we can finally complete our analysis of the spherical
vesicle (with K0 = 0) cut open at the equator and ask, what do we
need to do at the open edge to make up for the missing lower half?
We already know that a stress f ⊥ =−� l needs to be balanced.
Now we see that also an intrinsic torque m⊥ = −(2� + �)R−1t must
be compensated. In the absence of that, the vesicle would not be
able to maintain its curvature at the rim. Interestingly, the intrinsic
torque does depend on the vesicle’s size, unlike the stress. If one
insists on viewing smaller vesicles as being under a higher stress,
then one should have torsional stress in mind.

The equations for the torque finally involve the Gaussian mod-
ulus � in a nontrivial way. This does not violate the Gauss–Bonnet

theorem (70), since the Gaussian term influences the boundary
integral over the geodesic curvature. Indeed, Yao et al. (2012) have
recently studied how � affects the shape of pored membranes.
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Flat membranes without spontaneous curvature are torque free.
an spherically curved membranes also be torque free? From
q. (130) we see that at a given spontaneous curvature this would
equire the radius

= 2� + �
�K0

. (131)

nterestingly, this is generally not the radius at which the vesi-
le curvature corresponds to the spontaneous curvature. Instead,
t happens to be the radius at which the energy density of a spheri-
al vesicle is minimized. The range −2� ≤ � ≤ 0 in principle allows
≤R≤2/K0. Assuming� � −� leads to R�1/K0. Of course, for R /= 0
e will also have curvature stresses and generally a Young–Laplace
ressure to reckon with, therefore Eq. (118) must hold, too. Com-
ining this yields a connection between pressure and isotropic
ension which a torque-free vesicle would have to satisfy:

= (�K0)2

2� + � +
1
2
P

2� + �
�K0

. (132)

he sign of the first contribution is always positive, while the sign
f the second one is not, since both P and K0 can be either positive or
egative. It is therefore possible for the intrinsic torque m⊥ and the

sotropic tension˙ to both vanish, provided the pressure satisfies

= − 2(�K0)3

(2� + �)2
. (133)

his means that for K0 > 0 the pressure would have to be negative,
hile for P > 0 the spontaneous curvature would have to be opposite

o the curvature of the vesicle.

. Applications

This final section will present four examples that show, how
ne can efficiently reason with stress and torque tensors that are
omewhat less trivial than the cases investigated so far.

.1. Boundary conditions for adhesion

Consider two membranes, characterized by bending rigidities�1
nd �2. If they can adhere with an adhesion energy w > 0 per unit
rea, while being able to slide past each other, bending rigidity and
ension of the double-membrane are simply the sum of the indi-
idual membranes: �12 =�1 +�2 and �12 =�1 +�2—for exactly the
ame reason we encountered when transforming between mono-
ayer and bilayer quantities in Section 3.4. We now wish to know

hat happens at a contact line Cwhere the two membranes detach,
.e, what can we say about the geometry of the three approaching
urfaces if that contact line is in equilibrium.

Since a variation of the contact line (say, some slight un-peeling
etween the two membranes) does neither affect the topology nor
he boundary of either membrane, the Gauss–Bonnet theorem tells
s that the Gaussian part in the energy can play no role in this bal-
nce. Moreover, in the presence of bending energy the membranes
annot have kinks, so all three surfaces must be tangential at the
ontact line, and for continuity reasons they must also have the
ame curvature K|| along C. However, the component K⊥ perpen-
icular to the contact line or its derivative ∇⊥K⊥ need not be the
ame. In fact, understanding what happens at the contact line boils
own to predicting how these curvatures or curvature gradients

ump.
In Deserno et al. (2007) this problem is approached using
covariant variation of the contact line. However, the authors
oint out that the final answer follows readily from a stress- and
orque-balance. Since we know the stress- and torque tensors, the
onditions can be written down rather quickly. Notice that the only
Fig. 7. Geometry along the contact line between two adhering membranes.

meaningful stress is perpendicular to the contact line, but there are
two independent directions that would matter: tangential to the
surfaces and normal to them. For the torque, the only meaningful
direction is along the contact line.

Let us define the vector l (tangential to the surfaces and nor-
mal to C) such that it points into the direction of the composite
membrane—see Fig. 7. The easiest balance is that of the normal
force n · f ⊥, which with the help of Eq. (111) results in

�1(∇⊥K1
⊥)+ �2(∇⊥K2

⊥) = (�1 + �2)(∇⊥K12
⊥ ), (134)

where the superscripts at the curvatures are of course not expo-
nents but indicate the surface, and where the terms involving the
parallel curvatures have been omitted because∇⊥Ki|| is continuous
across C.

The torque balance is fairly straightforward, too. Notice first that
stress balance automatically implies the balance of the external
torques X × f a, so we only need to concern ourselves with the
intrinsic torques. Balancing t ·m⊥ and ignoring the Gaussian term
(as explained above), results in

�1K
1
⊥ + �2K

2
⊥ = (�1 + �2)K12

⊥ , (135)

where the parallel curvatures again cancel becauseKi|| is continuous
across C.

The final condition to consider is the tangential stress balance,
l · f ⊥. The curvature part itself is simple, each membrane pushes

back with a force proportional to (1/2)�i(Ki⊥)
2
, while the con-

tribution involving −(1/2)�i(Ki|| − Ki0)
2 − �i cancels (because the

surfaces are all tangential andKi|| is continuous across C). There is an
extra complication, though, originating from the adhesion energy,
which changes if we move the contact line along l. Consider moving
C into the direction of the adhering surfaces. Clearly, the composite
membrane, by virtue of its curvature K12

⊥ will push against such a
motion, but moving the contact line into this direction also means
un-peeling the membranes, i.e., lowering the adhesion energy by
wıX · l per unit length along the contact line. This increase in energy
must also resist the displacement of the contact line, and since
its contribution is simply proportional to the area, it enters the
stress tensor exactly like a surface tension term. Taken together,
this means that tangential force balance leads to

1
2
�1(K1

⊥)
2 + 1

2
�2(K2

⊥)
2 = 1

2
(�1 + �2)(K12

⊥ )
2 +w. (136)

Eqs. (134)–(136) constitute the contact line conditions for adhering
membranes we were looking for. It is possible to symmetrize the
two conditions (135) and (136) by alternatively removing K1 or K2
⊥ ⊥
between them, resulting in(

1+ �1

�2

)
(K1
⊥ − K12

⊥ )
2 = 2w

�1
, (137a)
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Fig. 8. Illustration of a micropipette aspiration setup: A pipette of inner radius a
sucks part of a vesicle into its bore. The pressure P1 in the pipette is lower than the
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1+ �2

�1

)
(K2
⊥ − K12

⊥ )
2 = 2w

�2
. (137b)

rom Eq. (135) we see that K1
⊥ and K2

⊥ cannot both be bigger than
12
⊥ , nor can they both be smaller. Hence, one is bigger and one is
maller thanK12

⊥ , and this means that when we take the square root
n Eqs. (137a,b), exactly one of them will receive a minus sign.

Two special cases are interesting. First, if �2→∞, the second
embrane essentially becomes a rigid substrate to which the first
embrane adheres. Eq. (137b) then shows that K2

⊥ = K12
⊥ , so the

ubstrate does no longer change its curvature at the contact line
it is too stiff to respond to the adhering membrane). Inserting this
ondition into Eq. (137a) leads to the well-known contact curvature
ondition

1
⊥ − K2

⊥ =
√

2w
�1
, (138)

hose axisymmetric version was first quoted by Seifert and
ipowsky (1990, footnote 14) and whose planar version is treated in
andau and Lifshitz (1999, Section 12, Prob. 6). It has been derived in
ts covariant version by variational considerations as well as exclu-
ively from stress balance by Capovilla and Guven (2002b), but as
ointed out by Deserno et al. (2007), this will not work if the sub-
trate is not flat. Indeed, we have seen that Eq. (138) results from
n entangled stress-torque condition, and for curved substrates the
orque condition is nontrivial, because rotations are enslaved to
ranslations. If one translates the contact line along the substrate,
his will generally force the normal vector to rotate, thus exerting
n intrinsic torque on the membrane that does work beyond the
ne due to the stress.

Second, if �1 =�2 =�, we find

K1
⊥ − K12

⊥ )
2 = (K2

⊥ − K12
⊥ )

2 = w
�
, (139)

hich means that the (squared) curvature jump of 2w/� of the rigid
ubstrate case is now evenly shared between the two membranes.

.2. Micropipette aspiration

Micropipette aspiration is an extremely useful experimental
ool for manipulating lipid membrane vesicles (Mitchison and
wann, 1954; Evans and La Celle, 1975; Evans et al., 1976; Kwok
nd Evans, 1981; Evans, 1983; Evans and Yeung, 1989; Evans and
awicz, 1990; Rawicz et al., 2000; Hochmuth, 2000; Tian et al.,
007). By partially sucking these vesicles into a pipette, monitor-

ng the required pressure difference, and measuring the radius of
he remaining outer vesicle, one can set the membrane’s surface
ension very precisely. Moreover, changing the pressure difference
dds or removes membrane area�A = 2�a�L from the outer vesi-
le part, where a is the inner radius of the pipette and �L is the
ength change of the vesicle’s “tongue” inside the pipette. Since a
an be quite small, even minute area changes result in values of
L that are very noticeable, thus enabling precision experiments

f membrane elasticity.
The conventional analysis goes like this (Bukman et al., 1996;

ochmuth et al., 1996; Waugh et al., 1992): If the outer vesicle
s a spherical cap of radius R and the end-cap inside the pipette
s a hemisphere of radius a (see Fig. 8), we get the Young–Laplace
elation (79a) across two spherical interfaces. This permits us to
liminate the pressure P inside the vesicle, resulting in

0 − P1 =�P = 2�
(

1
a
− 1
R

)
. (140)
owever, membranes have a bending rigidity, and the
oung–Laplace equation neglects this, so Eq. (140) cannot be
xact. In fact, Fournier and Galatola have pointed out the following
Fournier and Galatola, 2008): the contact curvature condition
pressure P0 in the solution containing vesicles, and the pressure P inside the vesicle
is bigger than both, giving P1 < P0 < P. If the vesicle outside the pipette is not flaccid,
it assumes with good accuracy a spherical shape of some radius R.

(138) fixes the curvature with which the membrane inside the
pipette detaches from the glass substrate (more precisely, it sets
the curvature jump perpendicular to the adhesion contact line).
For instance, in the absence of any adhesion energy between mem-
brane and pipette (a situation one usually tries to experimentally
ensure by suitably coating the pipette), the curvature jump should
be zero, and since the pipette is usually straight along its axis,
the normal curvature of the vesicle along the axial direction just
after detachment should be zero. However, if that vesicle were a
hemispherical cap of radius a, that curvature would instead be 1/a.
Hence, the cap of the vesicle inside the pipette cannot be a spherical
cap. It seems that in order to work out the exact answer requires
us to solve the shape equation including the bending terms, which
(since we have just seen that K is not constant) is evidently a very
difficult task, even under axisymmetry. However, Fournier and
Galatola show that the answer can be obtained with great ease
from force balance considerations (Fournier and Galatola, 2008).
Let us review their elegant argument.

Consider a force balance along the pipette’s axis at the circular
contact line inside the pipette at which the membrane detaches
from the substrate, and let us focus on the cylindrical membrane
segment on its right (see Fig. 8). There is a surface term stemming
from the membrane stress tensor, and a bulk term stemming from
the pressure difference, and these two terms must balance in equi-
librium. If we define the vector l to point along the axis of the
pipette and away from the vesicle’s main body (to the left in Fig. 8),
we get

2�a(l · f ⊥) = −�a2(P − P1). (141)

The surface stress in this case is given by

l · f ⊥ = −� −
1
2
�

1
a2
+w, (142)

where the three terms originate from surface tension, bending, and
adhesion, respectively. To clarify their sign, imagine moving the rim
to the right: both the surface tension and the bending term pull, so
they get a minus sign; however, we lose adhesion energy, so this
contribution must be positive. Inserting this result into Eq. (141),
we obtain

P − P1 +
2w
a
= 2�
a

[
1+ 1

2

(
�

a

)2
]

(143)
where we again used the length � from Eq. (71). Notice that
the adhesion contribution acts to increase the pressure differ-
ence (thus helping to suck the vesicle into the pipette). Also, the
Young–Laplace law gets a correction term that involves the ratio
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Fig. 9. Geometry along a local planar membrane buckle, which is compressed
along the x-direction and translationally invariant along the y-direction. It can be
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the membrane evades large compressive stresses, but it does not
arametrized by giving the angle  (s) with respect to the x-direction as a function
f arc length s. The buckling force f ⊥ = la f a = fx x has to point along the x-direction.

/a and hence matters especially for thin pipettes. Since it is pos-
ible to create very small tensions in such experiments (Evans and
awicz managed to achieve the amazingly low value 10−3 mN/m in
controlled fashion (Evans and Rawicz, 1990)), we get �∼300 nm.
oreover, nanopipettes with diameters less than 200 nm can now

e fabricated and have been applied in a soft matter context (Iwata
t al., 2007; Schrlau et al., 2008), so we see that there can clearly be
xperimental situations where the correction term matters or even
xceeds the Young–Laplace term, even though this is admittedly not
he case for typical micropipettes.

For the large vesicle outside the pipette the conventional
oung–Laplace approximation is still very reasonable, since R��

mplies that its shape is largely tension dominated, and so com-
ining this with Eq. (141) leads to the corrected pipette equation
Fournier and Galatola, 2008)

P = 2�
[

1
a
− 1
R
− w
�a

]
+ �

a3
. (144)

p to very minor corrections for the large vesicle part this equation
s exact, and it has been derived without solving the shape equa-
ion (whose exact solution is quite nontrivial in this case (Fournier
nd Galatola, 2008)). This worked because all we needed was a
tress balance, and the stresses follow from geometric properties
hat are often known before solving the shape equation, for instance
rom the boundary condition. This example therefore vividly illus-
rates why the stress formalism is not just conceptually pleasing
ut useful in practice.

.3. Planar membrane buckles

Consider a flat membrane in the xy-plane and exert a com-
ressive force along the x-direction, so that the membrane buckles
long the x-direction but remains flat perpendicularly to it. What
s the force needed to buckle it, and what is the subsequent stress
train relation? This situation is among the simplest cases in which
n-plane stresses lead to an out-of-plane deformation and thus of
ecessity to a stress tensor that is no longer tangential. It might be
oo simplified to have an immediate experimental analog, but this
lean geometry has recently been exploited in computer simula-
ions as a widely applicable method to probe membrane elasticity,
or instance to measure the bending modulus � (Noguchi, 2011; Hu

t al., 2013b).

Consider the geometry as depicted in Fig. 9. If we cut the mem-
rane along any of its straight lines parallel to the y-direction, the
s of Lipids 185 (2015) 11–45 37

force per unit length, as derived from Eqs. (110) and (114), is evi-
dently given by

f ⊥ =
[

1
2
�K2
⊥ −˙

]
l − �(∇⊥K⊥)n. (145)

Force balance requires f ⊥ to point along the x-direction and be con-
stant on the membrane: f ⊥ = fx x = const . Hence, the buckling force
fx can be determined in two different ways: first as the projection
of f ⊥ onto the x-direction, and second as the magnitude of f ⊥. This
gives the following two equations:

fx =
(

1
2
�K2
⊥ −˙

)
cos + �(∇⊥K⊥) sin , (146a)

f 2
x =

(
1
2
�K2
⊥ −˙

)2
+ �2(∇⊥K⊥)2, (146b)

where we used l · x = cos and n · x =− sin (see again Fig. 9).
Between these two equations we can eliminate the term∇⊥K⊥ and
arrive at a single equation that is one order lower in derivatives:

1
2
�K2 −˙ = fx cos . (147)

If we describe the angle of the membrane as a function of the arc
length s along the buckle, then K⊥ = − ̇, and Eq. (147) turns into a
differential equation for  (s):

1
2
� ̇2 = fx cos +˙, (148)

which can be easily solved by separation of variables and leads to
a Jacobi elliptic function.

The tricky bit is to enforce constraints. If the membrane has a
given total arc length L, and if it is buckled to a maximal extent
Lx between its left and right end, these conditions must fix the two
remaining unknowns in the problem: First, the integration constant
that will emerge upon integrating Eq. (148), and second, the value
of the buckling force fx. The transcendental nature of the solution
prevents this from being done in closed form, but Hu et al. (2013b)
show how to arrive at an analytical solution of arbitrary precision
in the form of a series expansion. If we picture the situation under
periodic boundary conditions, such that along the x-direction one
periodic buckle of length L fits into the box of length Lx, one finds
the buckling force (per unit length)

fx = �
(

2�
L

)2 [
1+ 1

2
� + 9

32
�2 + 21

128
�3 + · · ·

]
, (149)

where � = (L− Lx)/L is the buckling strain. Notice that fx does not
vanish in the limit �→0, which is precisely the hallmark of Euler
buckling.

As the area of the membrane was considered fixed, and not its
tension, one might think that˙ is also still open, but in fact it fol-
lows from the geometry of the solution. Consider an inflection point
along the membrane, i.e. a point where K⊥ = 0. Calling the angle at
that point  i, Eq. (147) now implies

˙ = −fx cos i. (150)

The value of i follows from the solution (in fact, from the integra-
tion constant of Eq. (148)). As long as the buckle does not develop
“overhangs” (regions where | |> 90◦), Eq. (150) and the positivity
of the buckling force fx imply that ˙ < 0, and hence for sure � < 0.
Here we have a case where the surface tension and even the
isotropic tension is negative. The reason for this is, of course, that we
compressed the membrane. Buckling is the natural way by which
eliminate them entirely. Once overhangs develop, the isotropic ten-
sion˙ becomes positive again, and at even larger strains the bare
surface tension might turn positive, too.
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Fig. 10. Geometry of a symmetric mediated-interaction problem involving two
spherical particles which partially adhere to an asymptotically flat membrane. The
force on the left particle can be determined as the total flux of stress through an
arbitrary contour enclosing the left particle. Adapting that contour to the symmetry
of the situation will give rise to simple formulas relating the force to the geometry
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.4. Membrane-mediated interactions

When particles adhere to membranes, they exert forces which
ocally change the membrane’s geometry, and the shape equation
87) describes how this perturbation is transmitted to more dis-
ant regions. The collective response of a membrane results in an
ntricate shape, whose energy depends on the positions and ori-
ntations of all particles. The membrane therefore exerts forces
nd torques on them, since slight displacements or rotations of
he particles will change the membrane shape and thus its asso-
iated energy. These mediated interactions elevate membranes
rom passive bystanders to active players in the physical interac-
ions of such particles, and they have therefore been studied by
number of authors (Goulian et al., 1993a,b; Park and Lubensky,
996; Weikl et al., 1998; Fournier and Dommersnes, 1997; Kim
t al., 1998; Dommersnes et al., 1998; Dommersnes and Fournier,
999a,b, 2002; Weikl, 2003; Fournier et al., 2003; Bartolo and
ournier, 2003; Müller et al., 2005b,c, 2007; Yolcu et al., 2011; Yolcu
nd Deserno, 2012). Since forces feature prominently in this phe-
omenon, the stress tensor is a natural tool with which to approach

t.
First of all, if the membrane indeed exerts forces on the particles,

hese particles will respond by moving—which they can because the
embrane is fluid. In order to study a static situation, we must pre-

ent those motions by applying equal but opposite counter-forces,
hich fix the particles. These external forces on the particles will

e transmitted further onto the membrane, where they become a
ource term for the stress tensor. Indeed, any closed loop integral
f f ⊥ = la f a around the region where force is added to the surface
ill give us that force—this is what Eq. (98) taught us.

It might at first sight seem that we have not gained an awful
ot, since we do not know the stress tensor numerically for most
ituations of interest. Finding it might be about as hard as solving
he shape equation, so where is the advantage of this reformula-
ion? The answer is that Eqs. (96) or (110) shows us how the stress
ensor depends on the membrane geometry, and we might have
fairly good qualitative understanding for how adhering particles

hange that geometry, while we have probably close to no intuition
hat happens to the overall energy when we slightly displace the
articles.

Another advantage is that we have much freedom in choosing
he closed contour. Just as in the electrostatic analogy shown in
q. (99) we are free to choose any surface that encloses a charge dis-
ribution of interest (and only that one), we are now free to choose
ny closed loop, as long as it contains only the source of stress that
e care about. This is very useful because me might be able to move

he contour such that it conforms to any symmetries we happen to
now about, or move it into far-away regions where the membrane
s largely unperturbed by particles and where we therefore actually
now the stress tensor.

To illustrate this, let us look at the situation of two iden-
ical axisymmetric particles adhering to an asymptotically flat

embrane with K0 = 0, as illustrated in Fig. 10. This two-particle
eometry has two mirror symmetries that will turn out to be use-
ul. According to Eq. (98) the force which the left particle exerts
n the membrane can be picked up by a closed loop integral of
⊥ around the left particle. Let us deform this contour such that it
ivides into 4 branches. The first one passes along the curve which

s the intersection of the membrane and the mirror plane between
he particles. Branches 2, 3, and 4 will be moved far away from the
wo particles, so that the membrane is flat there and the stress ten-
or given by f ⊥ =−� l. If we place the contours as shown in Fig. 10,

he contributions from branch 2 and 4 must exactly cancel, since
(2) =− l(4) and both branches have the same shape and length. The
ontribution from branch 3 will be equal to a surface tension � per
nit length along− l(3), but it will not cancel the contribution from
on the midline (branch 1).

branch 1. The mirror symmetry of the midplane ensures that every-
where on branch 1 we have l(1) = x, and therefore l(1) =− l(3), but
branch 1 is longer than branch 3, because due to the presence of the
membrane curving particles it is generally not straight. Its length is
by a finite amount�L longer than its projection into the xy-plane,
and hence the tension-derived force between branch 1 and branch
3 is imbalanced by the term ��L. Tracing the sign, we see that this
contribution points to the left, into − x-direction. Since this is ulti-
mately the force with which we fixed the position of the particle,
this means that the particle itself pushes to the right, towards the
right particle, and so we see that the surface tension contribution
induces an attraction between the two particles.

What about the other contributions to the stress tensor? Since
these all involve the curvature, they vanish on all branches except
the first one. The mirror symmetry between the particles also leads
to two convenient results: first, branch 1 is also a line of curvature,
and hence K⊥|| = 0, so the contribution along t vanishes; and sec-
ond,∇⊥K = 0 there, because the curvature must be an even function
when crossing the midline. That only leaves the contribution along
l, which we already know points into the x-direction. The total force
picked up by the contour therefore points along the x-direction and
has the magnitude (Müller et al., 2005b,c)

F = −��L + 1
2
�

∫
1

ds(K2
⊥ − K2

|| ). (151)

We already know that the surface tension term gives rise to an
attraction between the particles, and so we see that the K|| con-
tribution in the integral (which is the curvature of the membrane
along branch 1) does the same. However, the K⊥ term in the integral
(which is due to the membrane curvature perpendicular to branch
1) has the opposite sign. It is not at all obvious which of these
two terms “wins” against the others. There is no way to cleverly
rewrite this expression so that its sign becomes obvious without
first solving the shape equation.

If the two particles perturb the membrane only weakly, one
can solve the problem in linearized Monge gauge. This task
is still not straightforward, because the classical superposition
approximation (Nicolson, 1949) of simply adding up the indi-
vidual deformations created by the particles separately gives a
qualitatively wrong answer. In the case of vanishing tension and
for axisymmetric particles we can quickly see what that answer
would be: around each particle the membrane takes the shape of
a catenoid, which is an axisymmetric minimal surface for which

K = 0, and hence on the linearized Monge level �h(x, y) = 0, such
that h(x, y) is harmonic. After superposition of the shapes from the
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wo particles h is still harmonic and thus the surface still minimal.
ow look at the integrand in Eq. (151):

2
⊥ − K2

|| = (K⊥ + K||)(K⊥ − K||) = K(K⊥ − K||), (152)

hich vanishes for a minimal surface, and hence the (bending-
ssociated) force between the particles should vanish—but this is
rong. In a seminal paper, Goulian, Bruinsma and Pincus have cal-

ulated an interaction potential which to leading order decays like
he fourth power of particle separation (Goulian et al., 1993a). After
xing an incorrect minus sign (Goulian et al., 1993b) and the erro-
eous occurrence of the Gaussian modulus (Park and Lubensky,
996; Weikl et al., 1998; Fournier and Dommersnes, 1997), and
eneralizing to unequal particle radii (Yolcu and Deserno, 2012),
he interaction potential takes the form

(r) = 4��(�2
1 + �2

2 )
R2

1R
2
2

r4
+O(r−6), (153)

here r is the distance between the centers of the circularly sym-
etric particles of radii Ri, and � i is the detachment angle of the
embrane with respect to the horizontal at the rim of particle i. To

owest order, particles repel. Weikl et al. (1998) have generalized
his to include tension, but the particles are still found to repel.

Given that this is not only lowest order in particle separation but
lso linearized Monge gauge, one might wonder whether stronger
eformations or a closer distance change the situation. Intuition is
o reliable guide for nonlinear physics, so we have little to hold
n to. We might notice, though, that linearized Monge gauge for
embrane mediated interactions is the equivalent of Newtonian

ravity, for which the full theory is space-time mediated inter-
ctions between masses à la general relativity. And while many
mazing things happen once one crams a lot of mass into a small
egion of space (black holes come to mind), we know that the force
etween two masses never changes its sign. Therefore, based on
his analogy, we might expect that the membrane-mediated case
eyond linear order changes quantitatively but not qualitatively.
las, this would be wrong. If the particles create detachment angles
lose to 90◦ and come close enough together, they will attract,
s shown in Reynwar and Deserno (2011) by numerically solving
he nonlinear shape equations with the package Surface Evolver
Brakke, 2012) and deriving asymptotic approximations (based on
he stress tensor) valid for close distance and detachment angles
lose to 90◦.

The situation of two compact particles, as illustrated in Fig. 10
s thus quite nontrivial. In contrast, the case of two rods of length
much longer than their cross-section, lying parallel on a mem-
rane, is almost straightforward. Eq. (151) still applies, but some

mportant simplifications happen. First, if the two rods are long
nough, we can ignore complications due to their ends and treat
he problem as translationally invariant along the rods’ axis. Since
he curvature on the midplane along the contour now vanishes,
|| = 0. And since this is the case, the tension contribution vanishes,
oo, because �L = 0. Taken together, the force per length emerges
s

F

L
= 1

2
�K2
⊥. (154)

e still do not know the numerical value of K⊥, but we do know
hat K2

⊥ is positive, and so we can confidently predict that the two
ods will repel. Within linearized Monge gauge the force–distance
elation between two parallel cylinders has first been calculated
y Weikl (2003); in fact, due to its one-dimensional nature the

roblem can be solved essentially analytically in terms of elliptic
unctions and integrals (Müller et al., 2007). But it is still comfort-
ng to know that at least the sign can be understood without hardly
oing any calculation at all.
s of Lipids 185 (2015) 11–45 39

7. Conclusions and outlook

In this review we have seen how to describe the stresses and
torques transmitted by fluid membranes, and how this formalism
can address numerous problems in novel and often illuminat-
ing ways. The natural arena to do any of this is differential
geometry—a set of powerful and yet not overwhelmingly arcane
mathematical tools that strive to describe curved geometries in
a way that is not drenched in the arbitrariness of one’s choice
of a parametrization. The bare bones version presented in Sec-
tion 2 of this review already gets one surprisingly far, but of
course this is only just a beginning. Moreover, there are more
abstract versions of it, which use the concept of differential forms
(Lovelock and Rund, 1989; Frankel, 2004; Schutz, 1980; Darling,
1994; Flanders, 1989), and these have also been applied to describe
membranes (Tu and Ou-Yang, 2003, 2004, 2008; Tu et al., 2005; Tu,
2011).

So where do we go from here? The set of topics presented
in this review can be expanded in a number of different direc-
tions. For instance, little in the introduction of the stress tensor
relied on the fact that it was based on the specific example
of the Helfrich Hamiltonian. The concept makes sense already
for simple tension-dominated surfaces, even though there it is
almost trivial. More interestingly, it can be extended to geometric
Hamiltonians beyond quadratic curvature elasticity, for instance
containing higher powers of the curvatures or higher derivatives.
Most aspects generalize straightforwardly, but the possible occur-
rence of higher derivatives necessarily implies that integration
by parts will shovel extra terms onto the boundary, which in
the special cases discussed so far do not arise and which we
therefore have not paid any attention to. For instance, a term
(1/2)�∇ (∇ aK)(∇ aK) in the Hamiltonian will modify the contact
curvature condition (138) into∇⊥(K1

⊥ − K2
⊥) =

√
2w/�∇ , and these

new boundary terms matter in order to arrive at this result (Deserno
et al., 2007).

Furthermore, the framework can also be applied to any fields
defined on the curved geometry, not just the geometry itself.
For instance, if the membrane is mixed, one could define a
Ginzburg–Landau type functional on the surface that describes
the free energy of mixing, such as 1

2�(∇a	)(∇a	)+ V(	)+ ˇ	K	,
where 	 is the composition field and the last term describes a
composition-curvature coupling. The same arguments discussed
in Section 4 will swiftly lead to the stress tensor associated with
this extra field (Capovilla and Guven, 2004). One interesting
prediction is that the last term gives rise to normal stresses when-
ever the field 	 is spatially varying (Capovilla and Guven, 2004).
Since such stresses are also created by curvature gradients, we
see that composition-curvature coupling in the Hamiltonian also
couples the gradients of these fields on the level of stresses.
Alternatively, lipid tilt can be described as a vector field on the
membrane, and the associated stress tensor and Euler–Lagrange
equations can be derived by completely analogous means (Müller
et al., 2005c). Moreover, one can also look at cases of non-fluid
membranes, for which shear degrees of freedom matter. In the
limiting case of infinite shear resistance we have surfaces akin to
paper that are bendable but can only be deformed isometrically
(Guven and Müller, 2008; Müller et al., 2008; Guven et al., 2012,
2013).

A different way to make further progress is to exploit additional
symmetries of the Hamiltonian. For instance, the Helfrich Hamil-
tonian (in the absence of a surface tension term) is scale invariant:
Scaling all lengths by a factor �will increase the area element by �2

but simultaneously decrease the squared curvatures by the same

factor, thus leaving the energy invariant. More interestingly, the
Helfrich Hamiltonian is also conformally invariant (Thomsen, 1924;
Blaschke, 1929; White, 1973), meaning that—in particular—it is
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nvariant under inversions at a sphere.32 This implies that special
onformal transformations continuously transform a solution of
he shape equation into a new one. This is not particularly interest-
ng for spheres, since conformal transformations turn spheres into
pheres, but already the torus results in a two-parameter family
f degenerate solutions (Seifert, 1991), and higher genus surfaces
re even more complex (Jülicher et al., 1993). However, while solu-
ions of the shape equations are turned into new solutions, these
ew solutions are not necessarily stress free. For instance, if one
erforms an inversion of a catenoid, one can get discoid-shape solu-
ions if the inversion point lies on the catenoid’s axis, but these
ew shapes require a pair of localized axial point-forces to pin the
oles together (Castro-Villarreal and Guven, 2007a,b). If instead one
hooses the inversion point close to the surface on the neck of the
atenoid, one arrives at solutions of spherical topology which look
s if they have the membrane pinched in (or out) by two external
oint forces (Guven and Vázquez Montejo, 2013). The stress frame-
ork turns out to be very well suited to understand the nature of

orces and torques necessary to create and stabilize these rather
ontrivial shapes.

Even more insight into these connections might be gained
y a reformulation of the constrained variational problem dis-
ussed in Section 4.3, recently proposed by Guven and Vazquez
ontejo (2013): instead of enforcing the geometry of the sur-

ace by fixing ea, n, gab and Kab through their link to the
arametrization X , one instead enforces the integrability condi-
ions of Gauss–Codazzi–Mainardi ((39) and (40)). This way, one
an view the surface functional as entirely intrinsic, with the two
onstraints creating the tensor Kab as an auxiliary field that now
ust happens to be compatible with an actual surface. The amazing
spect of this is that one can thereby define a curvature functional
such as the Helfrich Hamiltonian) that also involves the extrin-
ic geometry without ever referring to an actual embedding: the
urface becomes an emergent entity. If the Hamiltonian in fact
epends on Kab, the multipliers turn out to be generators of confor-
al transformations, which provides a novel access to study surface

nstabilities.
The present review has purposefully steered clear of both ther-

al fluctuations and dynamical phenomena—not because they are
ot interesting, but because they open a universe of new questions
orthy of their own review article. To avoid skipping them entirely,

et us close with a few remarks that afford a very brief glance at
ome of these questions.

In a sense, Helfrich theory already implicitly includes some ther-
al fluctuations, because integrating out the microscopic degrees

f freedom of lipids and solvent molecules essentially implies
hat the resulting coarse-grained Hamiltonian is actually a free
nergy, and its phenomenological parameters are all tempera-
ure dependent.33 When one talks about thermal fluctuations of

embranes it is therefore usually implied that these are fluc-
uations of the geometry, and not of the underlying microscopic
onstituents. The appropriate language for this problem is statisti-
al field theory, and it is rich in beautiful and nontrivial problems

Nelson et al., 2004). Most theoretical treatments avoid nonlin-
ar nuisances by restricting to quadratic fluctuations around some
round state, almost always the plane, and hence Monge gauge

32 Consider a sphere of radius � whose center does not lie on the surface. The
nversion X→ X ′ =�2 X/| X|2 is then a conformal transformation. If we perform
he sequence “inversion, translation by some vector a, inversion”, we arrive at the
ontinuous group of special conformal transformations.
33 For instance, the bending modulus � depends on temperature, as one would
xpect from a material parameter. It can therefore also be considered to contain an
nergetic as well as an entropic “contribution” to its numerical value, and these can
e remarkably easily disentangled in a simulation should one be interested to do so
Hu et al., 2013b).
s of Lipids 185 (2015) 11–45

is very popular. Classical topics in this context are membrane
shape undulations and strategies to estimate the bending modu-
lus from them (Brochard and Lennon, 1975; Brochard et al., 1976;
Schneider et al., 1984a,b; Faucon et al., 1989; Evans and Rawicz,
1990; Komura and Lipowsky, 1992; Goetz et al., 1999; Henriksen
et al., 2004; Liu and Nagle, 2004; Imparato et al., 2005), the “Helfrich
repulsion” between two undulating membranes (Helfrich, 1978;
Helfrich and Servuss, 1984; Safinya et al., 1986; Wennerström and
Olsson, 2014), the subtle competition between this repulsion and
the shorter-ranged van der Waals attraction between membranes,
leading to a continuous unbinding transition (Lipowsky and Leibler,
1986; Milner and Roux, 1992), or fluctuation-mediated interactions
between membrane-bound objects (Goulian et al., 1993a,b; Park
and Lubensky, 1996; Golestanian et al., 1996a,b; Dommersnes and
Fournier, 1999a; Dean and Manghi, 2006; Yolcu et al., 2011, 2014;
Yolcu and Deserno, 2012; Lin et al., 2011; Gosselin et al., 2011). Even
though the present review has discussed the stress tensor only in
static (“ground state”) situations, it remains a very useful tool also in
the presence of fluctuations (Fournier and Barbetta, 2008; Gosselin
et al., 2011; Hu et al., 2013b).

Dynamical phenomena—i.e, processes that go beyond thermal
equilibrium—add a plethora of fascinating aspects to membrane
biophysics on basically all length scales, from molecular to macro-
scopic, and we will give an example at both ends of this spectrum.
Let us begin by considering thermally excited membrane undu-
lations of wave vector q, which have a mean squared amplitude
〈|hq|2〉= kBT/�q4 that does not depend on the specifics of the embed-
ding solvent. However, their linear relaxation rate is dictated by the
solvent viscosity �, leading to a dispersion relation iωu(q) =�q3/4�
(Brochard and Lennon, 1975; Zilman and Granek, 1996, 2002;
Granek, 1997; Brown, 2008) and thus a dynamic correlation func-
tion

〈hq(t)h∗q(0)〉 = kBT

�q4
exp

{
−�q

3

4�
t

}
. (155)

The reduction in power q4→q3 in the “dynamic exponent” (com-
pared to the “static prefactor”) is a consequence of hydrodynamic
interactions.

On the level of Helfrich theory, this result holds on all length
scales. However, Seifert and Langer (1993) have shown that the
need for lipids to laterally redistribute in order to respond to cur-
vature changes implies a small length scale below which one must
also account for lipid density changes, a term beyond simple geom-
etry. Briefly, a straightforward dimensional analysis shows that
lipid density perturbations relax with a rate iωd ∝KAq2/b, where KA
is the membrane’s area expansion modulus from Eq. (57) and b the
inter-leaflet friction constant. Settingωu =ωd, and simplifying mat-
ters via Eq. (61), leads to the crossover wavevector q∼102�/bd2.
Taking b≈108 Js/m4 (Merkel et al., 1989; Evans and Yeung, 1994;
Raphael and Waugh, 1996), we get a crossover wavelength of
�∼102 nm, which is sub-optical but of the same scale as countless
cellular membrane processes. Importantly, the density-bending
coupling introduces a renormalized bending rigidity �̃ = � + KAz2

0,
where z0 is the distance between the bilayer’s midplane and a
monolayer’s pivotal plane, which we discussed extensively in Sec-
tion 3.4. The extra term KAz

2
0∼60kBT exceeds a membrane’s typical

bare bending rigidity � quite substantially. Watson and Brown
(2010) have recently argued that this could explain a puzzling
discrepancy between values of the bending rigidity measured by
conventional equilibrium methods vs. those derived from dynam-
ical neutron-spin-echo techniques, which until then had been

“resolved” by assuming that the solvent viscosity is about three
times higher than it actually is.

On large scales such density-derived troubles vanish, but if the
solvent itself is driven, the resulting shear stresses lead to a very
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omplex dynamical behavior of any membranes embedded in it,
ost obviously vesicles. For nearly spherical vesicles one can still

reat this analytically using linear stability theory (Misbah, 2006;
lahovska and Gracia, 2007; Lebedev et al., 2007; Kaoui et al., 2009),
ut as soon as the vesicles have sufficiently much excess area to
eform substantially in the flow, the resulting dynamic behavior is
nything but linear response (even though, remarkably, often still
ery regular). One obviously exciting realization of this problem is
he flow of red blood cells through thin capillaries,34 and therefore
he problem of vesicles in flow has been rather extensively stud-
ed, using a wide variety of numerical techniques. Typically, on the
arge scales that matter the membrane can be captured by a tri-
ngulated surface, while numerous techniques for incorporating
he hydrodynamics have been employed, among them linear sta-
ility theory (Misbah, 2006; Vlahovska and Gracia, 2007; Lebedev
t al., 2007; Kaoui et al., 2009), Oseen-tensor interactions (Kraus
t al., 1996), the immersed boundary method (Eggleton and Popel,
998; Bagchi, 2007), stochastic rotation dynamics (Noguchi and
ompper, 2004, 2005a,b, 2007; McWhirter et al., 2009) dissipative
article dynamics (Pivkin and Karniadakis, 2008), Lattice Boltz-
ann techniques (Zhang et al., 2007, 2008), or boundary integral
ethods (Sukumaran and Seifert, 2001; Zhao and Shaqfeh, 2011;

hao et al., 2011; Biben et al., 2011; Spann et al., 2014). Alterna-
ively, both membrane and fluid can be described together using a
ynamic phase field functional (Biben and Misbah, 2003; Beaucourt
t al., 2004; Biben et al., 2005; Campelo and Hernández-Machado,
006, 2007a,b, 2008). For recent reviews, see Vlahovska et al. (2009,
013) and Li et al. (2013b).

The aim of such studies is to understand, how the dynamic
esponse of the vesicle depends on key dimensionless parameters
Kaoui et al., 2009). The most important ones are: (i) the reduced
olume Ṽ = V/V0, where V is the vesicle volume and V0 = (4/3)�R3

0
s the volume of a sphere of the same area A = 4�R2

0 as the vesicle;
ii) the viscosity contrast �in/�out between the inside and the out-
ide of the vesicle; and (iii) the capillary number Ca = �outR3

0�̇/�,
here �̇ is the shear rate. Depending on the values of these param-

ters, vesicles respond to the flow in different ways. If the viscosity
ontrast is small, they “tank-tread,” meaning that their mathemati-
al shape in the flow is stationary but their physical lipid constituents
eriodically orbit that shape; conversely, if the viscosity contrast

s large, vesicles tumble in the flow. Between these two regimes
here might exist a range in which the vesicle’s main axis librates
n the flow but does not fully rotate around (a motion also termed
vacillating-breathing”). Where these transitions happen in turn
epends on the Capillary number.

Evidently, these problems are enormously complex. We have
een that the surface geometry of deformed vesicles is described
y a theory that is purely geometric and, as a consequence, very
onlinear. Coupling it to the idiosyncrasies of hydrodynamic
ow problems, even in the linear Stokes regime and for weakly
eformed vesicles, is very challenging due to the highly nontrivial
hape of the moving boundary—namely, the vesicle’s surface itself.
ut when hydrodynamic stresses deform the vesicle, they essen-
ially have to reckon with the membrane’s stress tensor as their
ey counter-player, and so the concepts and techniques examined
n this review will remain highly useful. However, new membrane
tresses beyond those from a purely fluid-elastic Hamiltonian arise

ue to dynamic phenomena, such as shear and finite relaxation
imes, and bold strides have been made to combine these into

34 Well, almost. Red blood cells have a polymerized spectrin network underneath
heir bilayer (Bennett, 1985), which equips them with a nonzero shear modulus that
ontributes to their elastic response (Li et al., 2005).
s of Lipids 185 (2015) 11–45 41

a general unified framework (Lomholt et al., 2005). But that is
another story and shall be told another time.
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