2017 Soft Matter Summer School on Membranes

Protein-Membrane Interaction Studies using NMR Spectroscopy

Jung Ho Lee

Department of Chemistry Seoul National University, Korea

Motivation

- Compartmentalization by membranes is essential for life.
- There must be specific ways to overcome the boundaries of the compartment (membrane).
- Macromolecules exist to pass materials and information between a cell and its environment.
- a: Fluid Mosaic Model (Science 175, 720-731, 1972)
- b: High protein occupancy, variable patchiness, and thickness.

Image: Nature 438, 578-580 (2005)

Course Outline

1. NMR spectroscopy

2. Membrane mimetics for NMR studies

3. Membrane proteins

4. Induction of Protein Structure upon Lipid Binding

5. Protein Motions on the Membrane

Structure of small molecules

Metabolomics

Identification and quantitative measurement of many metabolites in biological samples.

Reaction Kinetics

Lee J.H., et al. Biochemistry 2016

Dynamic Equilibrium

Libich D.S., et al. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 8817

Flexible Proteins and Regions

Conformation

Binding

Sugase K. et al. Nature 2007, 447, 1021.

~ MDa Proteins

Sprangers R., Kay L.E. *Nature* **2007**, *445*, 618.

In-Cell NMR

Selenko P. et al. Nature 2016, 530, 45.

Protein structure in live E. coli cells

Sakakibara D. et al. Nature 2009, 458, 102-105.

Protein phosphorylation in live *oocyte* cells

Selenko P. et al. *Nat. Struct. Mol. Biol.* **2008**, *15*, 321-329.

Gallagher, F. A., et al. Nature 2008, 453, 940.

Quantum Computation

Polymers

NMR Signal

http://mutuslab.cs.uwindsor.ca/

T₁ and T₂ Relaxation

http://mri-q.com/

Rate of relaxation: $R_1=1/T_1$ and $R_2=1/T_2$

Dipolar Interactions between Nuclear Spins

FEBS Lett. 555, 144-150 (2003)

Nuclear Overhauser Effect (NOE)

The first protein structure determined by NMR

Dipolar Relaxation through a Covalent Bond

- Ratio of global to local motion (order parameter) → local dynamics
- Timescale of local and global motions

 Local motions are often described as a bond wobbling in a cone

Special motions lead to certain relaxation patterns.

J. Am. Chem. Soc. 104, 4546–4559 (1982) Image: Introduction to Fluorescence. CRC Press (2014) 14

Line Broadening by Chemical Exchange

2. Lipid Membrane Mimetics for NMR studies

Image: Nat. Struct. Mol. Biol. 23, 468-474 (2016)

Micelle

- The most popular and simplest way to prepare membrane proteins for NMR studies is to disperse them in lipid micelles.
- Denatured (e.g. by urea) membrane protein is added dropwise to a detergent solution to refold the protein → Micelle solution is added dropwise to the refolded protein while stirring → Buffer is exchanged to the micelle solution.

Front. Pharmacol. 6, 1-24 (2015)

diheptanoyl / dihexanoyl phosphocholine (DHPC)

Bicelle

- Bicelles are mixture of bilayer-forming phospholipids (e.g. DMPC) and non-bilayer-forming phospholipids (e.g. DHPC).
- The ratio DMPC(long-chain)/DHPC(short-chain) determines the size of the bicelle, with higher ratio leading to larger and flatter bicelle.

DMPC

DHPC

Nanodisc

- Nanodiscs are small patches of lipid bilayer surrounded by segments of amphipathic helical proteins that stabilize the patches.
- Usually two copies of the membrane scaffold protein (MSP) are at their perimeter. MSPs are derived from apolipoprotein A-1.
- Nanodiscs are assembled by adding MSPs to cholate-solubilized phospholipids and detergent-solubilized membrane proteins.
 Detergents are removed afterwards.

Nano Letters 2, 853–856 (2002) J. Am. Chem. Soc. 135, 1919–1925 (2013)

Liposomes for Functional Studies

https://www.mirusbio.com/

Making Liposomes

Image: Avanti Lipids

Motivation for Studying Membrane Proteins by NMR

3. Characterization of Membrane Proteins by NMR

Nat. Struct. Mol. Biol. 23, 468-474 (2016)

Membrane-Protein Function and Dynamics

Faster Dynamics in the ligand-free apo form

Ligand-induced conformational selection

J. Am. Chem. Soc. 136, 8072-8080 (2014)

Science 355, 1106-1110 (2012)

Val, Leu, lle methyl-protonated and ¹⁵N-, ¹³C-, ²H-labeled membrane protein

¹⁵N ammonium chloride, U-¹³C/²H-labeled glucose, ²H₂O

J. Biomol. NMR. 13, 369–374 (1999)

Proteins Affect Membranes in Many Ways

PROTEIN AGGREGATION PATHWAY

4. Structure Induction upon Membrane Binding

<u>Alpha-Synuclein (α S) and Lipid-Membrane Interaction</u>

Nat. Commun. 5, 1-8 (2014)

J. Biol. Chem. 280, 9595-9603 (2005)

Alpha-Synuclein (αS) Protein

α S Primary Structure

Seven 11-residues repeats

α S Function

Maintain the size of synaptic vesicle pools

Control

Deplete αS

 $\frac{\text{Impaired learning}}{\text{and memory in } \alpha S}$ $\frac{\text{knockout mice}}{\text{knockout mice}}$

α S and Parkinson's Disease (PD)

- αS gene triplication and mutations are found in familial PD.
- αS is the main component of Lewy bodies, which are aggregates of proteins in PD patient's brain.

Challenges in Studying α S-Membrane Interaction

Dynamic Equilibrium

Heterogeneous Population

Bodner et al. J. Mol. Biol. (2009)

Jiang et al. J. Am. Chem. Soc. (2013)

$\alpha \text{S-Membrane}$ Complex is too large for NMR

Liposome-aS Interaction

- Signals from the N-terminal residues are significantly more attenuated than signals from the C-terminal residues upon addition of SUVs.
- No new or shifted resonance positions are observed.
- Minimal line-broadening is observed.
- Exchange is slow on the NMR timescale (<10 s⁻¹).

J. Mol. Biol. 390, 775-790 (2009)

Multiple Competing-Membrane-Binding-Modes of αS

- At low lipid/protein ratios (A), there exists a pool of protein, where only the first ~25 N-terminal residues are bound (SL1), and the second pool (SL2), where residues 1-97 are bound and invisible.
- Residues that are not directly bound to the lipids are dynamically disordered, even when other parts of the same protein molecule are immobilized.
- The relative degree of attenuation changes when the protein concentration is lowered (B), indicating competition between different binding modes. For example, SL1 is 20% and SL2 is 40% in (A).
- NMR data recorded at high lipid/aS ratio (C), suggests that more than two distinct states exist.

J. Mol. Biol. 390, 775-790 (2009)

Kinetics of Binding

- The observed R₂^T equals the sum of the R₂^T of the highly mobile R₂^T random-coil and the forward rate of the free-to-bound transition k_{on}.
- k_{on} = 3-5 s⁻¹

Saturation transfer NMR

- Selective saturation of the magnetization of phospholipid methylene resonances at 1.16 ppm.
- The fact that magnetization can be transferred from the lipid-bound state to the free state indicates that the timescale of bound-to-free transition is on the order of longitudinal relaxation rate of aS amide protons. k_{off} = ~1s⁻¹.

S I J. Mol. Biol. 390, 775-790 (2009)

Truncated signal

Probing the Invisible Bound State of α S

Transferred NOE between $H^{\scriptscriptstyle N}$ and $H^{\scriptscriptstyle N}$

- (Free state \rightarrow Bound state \rightarrow Free state) during the NOE mixing time. Fast NOE transfer indicates that the bound complex is huge and α S is helical.
- Both SL1 and SL2 regions show H^N-H^N connectivities to eight or more adjacent amide protons.

Transferred NOE between Leu-CH₃ and H^N

 NOE difference effect is large for Leu8 and Leu38 and extends over a significant number of residues.

J. Mol. Biol. 390, 775-790 (2009)

Size of the α S-Lipid Complex

Cryo-EM Images

600μM αS + 0.03% SUV (400μM lipid)

NMR diffusion experiment

Sample	$D_{\rm s}$ (× 10 ⁻¹¹ m ² s ⁻¹)	R _h (Å) ^a
150 μM αS ^b	5.77 ± 0.12	26.6 ± 0.5
150 μM αS ⁰ + 0.03% SUV	4.1±0.2	37 ± 2
150 μM αS ^b + 2.0% SUV	0.15 ± 0.01	990 ± 30
2.0% SUV ^c	0.99 ± 03	152 ± 5

J. Mol. Biol. 390, 775-790 (2009)

Open Questions

J. Mol. Biol. 390, 775-790 (2009)

- If αS binds to the surface of SUVs with its 100 Nterminal residues in a contiguous α-helical conformation, it would occupy a minimum of 1400 Å², approximately to the surface area of 28 phospholipid headgroups. (surface area of a single lipid headgroup in a bilayer is 50 Å²).
- With two leaflets per bilayer, the minimal stoichiometry for such a binding mode requires at least 56 lipids per αS molecule, assuming that the surface of an SUV to be 100% covered by αS.
- Even with αS : lipid = 1 : 2.6, 40% of αS is bound in SL2 mode.
- The N-terminally acetylated form of αS binds to the lipid membranes even more tightly worsening the dilemma.
- Does a special stable, oligomeric, lipid-bound species of αS exist (e.g. bundle of aS with a modest number of phospholipids at its core)?

Monitoring Acetylation Reactivity of Lysine Side Chains

NMR is a High Resolution Technique

Multidimensional NMR

High Magnetic Field

Lee, J.H., et al. *Proc. Natl. Acad. Sci. U.S.A.* **2015**, *112*, E4206

A Non-Destructive Technique

Assignment of Acetylated α S Lysine Side Chains

900 MHz 127.2 127.3 127.4 127.4 127.5 8.04 8.02 8.00 7.98 ¹H (ppm)

Lipid-Induced Protection of α S Acetylation

SLOW

Effect of SUV Chemical Composition on α S Binding

Same Helicity

Different Protection

<u>as may preferably bind to</u> <u>regions of lipid disorder and</u> <u>annealing defects OR lipid rafts</u>

5. Transient Membrane-Protein Interactions

Sequence Variation of ${}^{15}N-\Delta R_2$

Local and global motions of the NH bond

Rotation of Ubiquitin on the Surface of Liposome

 α (degrees): the angle between N-H bond vector and the axis of rotation

J. Am. Chem. Soc. 138, 5789-5792 (2016)

Rotation of Ubiquitin on the Surface of Liposome

Ubiquitin rotates and wobbles on the surface of a liposome, upon encounter

Probing the Surface of Interaction

PRE mapping at the interface

purple: high ¹H^N PRE green: high methyl PRE

Electrostatic potential

blue: positive, white: neutral, red: negative

Membrane Mimetics and Study of Membrane Proteins

Further Reading

- 1) Cavanagh et al. Protein NMR spectroscopy: Principles and Practice. Academic Press, 2nd edition (2006)
- Engelman D.M. "Membranes are more mosaic than fluid", *Nature*. 438, 578-580 (2005)
- 3) Liang B. and Tamm L.K. "NMR as a tool to investigate the structure, dynamics and function of membrane proteins", *Nat. Struct. Mol. Biol.* 23, 468–474 (2016)
- Bodner C.R., Dobson C.M., Bax A. "Multiple tight phospholipid-binding modes of alpha-synuclein revealed by solution NMR spectroscopy", *J. Mol. Biol.* 390, 775-790 (2009)
- 5) Ceccon A., Tugarinov V., Bax A., Clore G.M. "Global dynamics and exchange kinetics of a protein on the surface of nanoparticles revealed by relaxation-based solution NMR spectroscopy", *J. Am. Chem. Soc.* 138, 5789-5792 (2016)